plsem {lslx} | R Documentation |
S3 interface for semi-confirmatory SEM via PL
Description
plsem()
is an S3
interface for obaining a fitted lslx
object.
Usage
plsem(
model,
data,
penalty_method = "mcp",
lambda_grid = "default",
delta_grid = "default",
numeric_variable,
ordered_variable,
weight_variable,
auxiliary_variable,
group_variable,
reference_group,
sample_cov,
sample_mean,
sample_size,
sample_moment_acov,
verbose = TRUE,
...
)
Arguments
model |
A |
data |
A |
penalty_method |
A |
lambda_grid |
A non-negative |
delta_grid |
A non-negative |
numeric_variable |
A |
ordered_variable |
A |
weight_variable |
A |
auxiliary_variable |
A |
group_variable |
A |
reference_group |
A |
sample_cov |
A numeric |
sample_mean |
A |
sample_size |
A |
sample_moment_acov |
A numeric |
verbose |
A |
... |
Other arguments. For details, please see the documentation of |
Value
A fitted lslx
object
Examples
## EXAMPLE: Semi-Confirmatory Factor Analysis with lavaan Style ##
# specify a factor analysis model with lavaan style
model_fa <- "visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9
pen() * visual =~ x4 + x5 + x6 + x7 + x8 + x9
pen() * textual =~ x1 + x2 + x3 + x7 + x8 + x9
pen() * speed =~ x1 + x2 + x3 + x4 + x5 + x6
visual ~~ 1 * visual
textual ~~ 1 * textual
speed ~~ 1 * speed"
# fit with mcp under specified penalty levels and convexity levels
lslx_fa <- plsem(model = model_fa,
data = lavaan::HolzingerSwineford1939,
penalty_method = "mcp",
lambda_grid = seq(.02, .60, .02),
delta_grid = c(1.5, 3.0, Inf))
# summarize fitting result under the penalty level selected by 'bic'
summary(lslx_fa, selector = "bic")