onepl {lsirm12pl}R Documentation

1PL Rasch model.

Description

onepl is used to fit 1PL Rasch model.

Usage

onepl(
  data,
  niter = 15000,
  nburn = 2500,
  nthin = 5,
  nprint = 500,
  jump_beta = 0.4,
  jump_theta = 1,
  pr_mean_beta = 0,
  pr_sd_beta = 1,
  pr_mean_theta = 0,
  pr_a_theta = 0.001,
  pr_b_theta = 0.001
)

Arguments

data

Matrix; binary item response matrix to be analyzed. Each row is assumed to be respondent and its column values are assumed to be response to the corresponding item.

niter

Numeric; number of iterations to run MCMC sampling. default value is 15000.

nburn

Numeric; number of initial, pre-thinning, MCMC iterations to discard. default value is 2500.

nthin

Numeric;number of thinning, MCMC iterations to discard. default value is 5.

nprint

Numeric; MCMC samples is displayed during execution of MCMC chain for each nprint. default value is 500.

jump_beta

Numeric; jumping rule of the proposal density for beta. default value is 0.4.

jump_theta

Numeric; jumping rule of the proposal density for theta. default value is 1.0.

pr_mean_beta

Numeric; mean of normal prior for beta. default value is 0.

pr_sd_beta

Numeric; standard deviation of normal prior for beta. default value is 1.0.

pr_mean_theta

Numeric; mean of normal prior for theta. default value is 0.

pr_a_theta

Numeric; shape parameter of inverse gamma prior for variance of theta. default value is 0.001.

pr_b_theta

Numeric; scale parameter of inverse gamma prior for variance of theta. default value is 0.001.

Details

onepl models the probability of correct response by respondent jj to item ii with item effect βi\beta_i, respondent effect θj\theta_j:

logit(P(Yj,i=1θj,βi))=θj+βilogit(P(Y_{j,i} = 1|\theta_j,\beta_i))=\theta_j+\beta_i

Value

onepl returns an object of list containing the following components:

beta_estimate

posterior estimation of beta.

theta_estimate

posterior estimation of theta.

sigma_theta_estimate

posterior estimation of standard deviation of theta.

beta

posterior samples of beta.

theta

posterior samples of theta.

theta_sd

posterior samples of standard deviation of theta.

accept_beta

accept ratio of beta.

accept_theta

accept ratio of theta.

Examples


# generate example item response matrix
data     <- matrix(rbinom(500, size = 1, prob = 0.5),ncol=10,nrow=50)

result <- onepl(data)


[Package lsirm12pl version 1.3.2 Index]