onepl {lsirm12pl} | R Documentation |
1PL Rasch model.
Description
onepl is used to fit 1PL Rasch model.
Usage
onepl(
data,
niter = 15000,
nburn = 2500,
nthin = 5,
nprint = 500,
jump_beta = 0.4,
jump_theta = 1,
pr_mean_beta = 0,
pr_sd_beta = 1,
pr_mean_theta = 0,
pr_a_theta = 0.001,
pr_b_theta = 0.001
)
Arguments
data |
Matrix; binary item response matrix to be analyzed. Each row is assumed to be respondent and its column values are assumed to be response to the corresponding item. |
niter |
Numeric; number of iterations to run MCMC sampling. default value is 15000. |
nburn |
Numeric; number of initial, pre-thinning, MCMC iterations to discard. default value is 2500. |
nthin |
Numeric;number of thinning, MCMC iterations to discard. default value is 5. |
nprint |
Numeric; MCMC samples is displayed during execution of MCMC chain for each |
jump_beta |
Numeric; jumping rule of the proposal density for beta. default value is 0.4. |
jump_theta |
Numeric; jumping rule of the proposal density for theta. default value is 1.0. |
pr_mean_beta |
Numeric; mean of normal prior for beta. default value is 0. |
pr_sd_beta |
Numeric; standard deviation of normal prior for beta. default value is 1.0. |
pr_mean_theta |
Numeric; mean of normal prior for theta. default value is 0. |
pr_a_theta |
Numeric; shape parameter of inverse gamma prior for variance of theta. default value is 0.001. |
pr_b_theta |
Numeric; scale parameter of inverse gamma prior for variance of theta. default value is 0.001. |
Details
onepl
models the probability of correct response by respondent j
to item i
with item effect \beta_i
, respondent effect \theta_j
:
logit(P(Y_{j,i} = 1|\theta_j,\beta_i))=\theta_j+\beta_i
Value
onepl
returns an object of list containing the following components:
beta_estimate |
posterior estimation of beta. |
theta_estimate |
posterior estimation of theta. |
sigma_theta_estimate |
posterior estimation of standard deviation of theta. |
beta |
posterior samples of beta. |
theta |
posterior samples of theta. |
theta_sd |
posterior samples of standard deviation of theta. |
accept_beta |
accept ratio of beta. |
accept_theta |
accept ratio of theta. |
Examples
# generate example item response matrix
data <- matrix(rbinom(500, size = 1, prob = 0.5),ncol=10,nrow=50)
result <- onepl(data)