lsirm2pl_normal_ss {lsirm12pl} | R Documentation |
2PL LSIRM with normal likelihood and model selection approach.
Description
lsirm2pl_normal_ss is used to fit 2PL LSIRM for continuous variable with model selection approach. lsirm2pl_normal_ss factorizes item response matrix into column-wise item effect, row-wise respondent effect and further embeds interaction effect in a latent space. Unlike 1PL model, 2PL model assumes the item effect can vary according to respondent, allowing additional parameter multiplied with respondent effect. The resulting latent space provides an interaction map that represents interactions between respondents and items.
Usage
lsirm2pl_normal_ss(
data,
ndim = 2,
niter = 15000,
nburn = 2500,
nthin = 5,
nprint = 500,
jump_beta = 0.4,
jump_theta = 1,
jump_alpha = 1,
jump_gamma = 1,
jump_z = 0.5,
jump_w = 0.5,
pr_mean_beta = 0,
pr_sd_beta = 1,
pr_mean_theta = 0,
pr_spike_mean = -3,
pr_spike_sd = 1,
pr_slab_mean = 0.5,
pr_slab_sd = 1,
pr_mean_alpha = 0.5,
pr_sd_alpha = 1,
pr_a_eps = 0.001,
pr_b_eps = 0.001,
pr_a_theta = 0.001,
pr_b_theta = 0.001,
pr_xi_a = 0.001,
pr_xi_b = 0.001,
verbose = FALSE
)
Arguments
data |
Matrix; a binary or continuous item response matrix for analysis. Each row represents a respondent, and each column contains responses to the corresponding item. |
ndim |
Integer; the dimension of the latent space. Default is 2. |
niter |
Integer; the total number of MCMC iterations to run. Default is 15000. |
nburn |
Integer; the number of initial MCMC iterations to discard as burn-in. Default is 2500. |
nthin |
Integer; the number of MCMC iterations to thin. Default is 5. |
nprint |
Integer; the interval at which MCMC samples are displayed during execution. Default is 500. |
jump_beta |
Numeric; the jumping rule for the beta proposal density. Default is 0.4. |
jump_theta |
Numeric; the jumping rule for the theta proposal density. Default is 1.0. |
jump_alpha |
Numeric; the jumping rule for the alpha proposal density. Default is 1.0. |
jump_gamma |
Numeric; the jumping rule for the theta proposal density. Default is 1.0. |
jump_z |
Numeric; the jumping rule for the z proposal density. Default is 0.5. |
jump_w |
Numeric; the jumping rule for the w proposal density. Default is 0.5. |
pr_mean_beta |
Numeric; the mean of the normal prior for beta. Default is 0. |
pr_sd_beta |
Numeric; the standard deviation of the normal prior for beta. Default is 1.0. |
pr_mean_theta |
Numeric; the mean of the normal prior for theta. Default is 0. |
pr_spike_mean |
Numeric; mean of spike prior for log gamma default value is -3. |
pr_spike_sd |
Numeric; standard deviation of spike prior for log gamma default value is 1. |
pr_slab_mean |
Numeric; mean of spike prior for log gamma default value is 0.5. |
pr_slab_sd |
Numeric; standard deviation of spike prior for log gamma default value is 1. |
pr_mean_alpha |
Numeric; the mean of the log normal prior for alpha. Default is 0.5. |
pr_sd_alpha |
Numeric; the standard deviation of the log normal prior for alpha. Default is 1.0. |
pr_a_eps |
Numeric; shape parameter of inverse gamma prior for variance of data likelihood. Default is 0.001. |
pr_b_eps |
Numeric; scale parameter of inverse gamma prior for variance of data likelihood. Default is 0.001. |
pr_a_theta |
Numeric; the shape parameter of the inverse gamma prior for the variance of theta. Default is 0.001. |
pr_b_theta |
Numeric; the scale parameter of the inverse gamma prior for the variance of theta. Default is 0.001. |
pr_xi_a |
Numeric; first shape parameter of beta prior for latent variable xi. Default is 1. |
pr_xi_b |
Numeric; second shape parameter of beta prior for latent variable xi. Default is 1. |
verbose |
Logical; If TRUE, MCMC samples are printed for each |
Details
lsirm2pl_normal_ss
models the continuous value of response by respondent j
to item i
with item effect \beta_i
, respondent effect \theta_j
and the distance between latent position w_i
of item i
and latent position z_j
of respondent j
in the shared metric space, with \gamma
represents the weight of the distance term. For 2pl model, the the item effect is assumed to have additional discrimination parameter \alpha_i
multiplied by \theta_j
:
Y_{j,i} = \theta_j+\beta_i-\gamma||z_j-w_i|| + e_{j,i}
where the error e_{j,i} \sim N(0,\sigma^2)
. lsrm2pl_noraml_ss
model include model selection approach based on spike-and-slab priors for log gamma. For detail of spike-and-slab priors, see References.
Value
lsirm2pl_normal_ss
returns an object of list containing the following components:
data |
Data frame or matrix containing the variables in the model. |
bic |
Numeric value with the corresponding BIC. |
mcmc_inf |
number of mcmc iteration, burn-in periods, and thinning intervals. |
map_inf |
value of log maximum a posterior and iteration number which have log maximum a posterior. |
beta_estimate |
posterior estimation of beta. |
theta_estimate |
posterior estimation of theta. |
sigma_theta_estimate |
posterior estimation of standard deviation of theta. |
sigma_estimate |
posterior estimation of standard deviation. |
gamma_estimate |
posterior estimation of gamma. |
z_estimate |
posterior estimation of z. |
w_estimate |
posterior estimation of w. |
pi_estimate |
posterior estimation of phi. inclusion probability of gamma. if estimation of phi is less than 0.5, choose Rasch model with gamma = 0, otherwise latent space model with gamma > 0. |
beta |
posterior samples of beta. |
theta |
posterior samples of theta. |
theta_sd |
posterior samples of standard deviation of theta. |
sigma |
posterior samples of standard deviation. |
gamma |
posterior samples of gamma. |
z |
posterior samples of z. The output is 3-dimensional matrix with last axis represent the dimension of latent space. |
w |
posterior samples of w. The output is 3-dimensional matrix with last axis represent the dimension of latent space. |
pi |
posterior samples of phi which is indicator of spike and slab prior. If phi is 1, log gamma follows the slab prior, otherwise follows the spike prior. |
accept_beta |
accept ratio of beta. |
accept_theta |
accept ratio of theta. |
accept_w |
accept ratio of w. |
accept_z |
accept ratio of z. |
accept_gamma |
accept ratio of gamma. |
alpha_estimate |
Posterior estimates of the alpha parameter. |
alpha |
Posterior estimates of the alpha parameter. |
accept_alpha |
Acceptance ratio for the alpha parameter. |
References
Ishwaran, H., & Rao, J. S. (2005). Spike and slab variable selection: frequentist and Bayesian strategies. The Annals of Statistics, 33(2), 730-773.
Examples
# generate example (continuous) item response matrix
data <- matrix(rnorm(500, mean = 0, sd = 1),ncol=10,nrow=50)
lsirm_result <- lsirm2pl_normal_ss(data)
# The code following can achieve the same result.
lsirm_result <- lsirm(data ~ lsirm2pl(spikenslab = TRUE, fixed_gamma = FALSE))