rpsft {lrstat} | R Documentation |
Rank preserving structured failure time model (RPSFTM) for treatment switching
Description
Obtains the causal parameter estimate of the RPSFTM from the log-rank test and the hazard ratio estimate from the Cox model.
Usage
rpsft(
data,
stratum = "stratum",
time = "time",
event = "event",
treat = "treat",
rx = "rx",
censor_time = "censor_time",
base_cov = "none",
low_psi = -1,
hi_psi = 1,
n_eval_z = 100L,
alpha = 0.05,
treat_modifier = 1,
recensor = 1L,
autoswitch = 1L,
gridsearch = 0L,
boot = 0L,
n_boot = 1000L
)
Arguments
data |
The input data frame that contains the following variables:
|
stratum |
The name of the stratum variable in the input data. |
time |
The name of the time variable in the input data. |
event |
The name of the event variable in the input data. |
treat |
The name of the treatment variable in the input data. |
rx |
The name of the rx variable in the input data. |
censor_time |
The name of the censor_time variable in the input data. |
base_cov |
The vector of names of baseline covariates (excluding treat) in the input data. |
low_psi |
The lower limit of the causal parameter of RPSFTM. |
hi_psi |
The upper limit of the causal parameter of RPSFTM. |
n_eval_z |
The number of points between low_psi and hi_psi at which to evaluate the log-rank Z-statistics. |
alpha |
The significance level to calculate confidence intervals. |
treat_modifier |
The optional sensitivity parameter for the constant treatment effect assumption. |
recensor |
Whether to apply recensoring to counter-factual
survival times. Defaults to |
autoswitch |
Whether to exclude recensoring for treatment arms
with no switching. Defaults to |
gridsearch |
Whether to use grid search to estimate the causal
parameter psi. Defaults to |
boot |
Whether to use bootstrap to obtain the confidence
interval for hazard ratio. Defaults to |
n_boot |
The number of bootstrap samples. |
Details
We use the following steps to obtain the hazard ratio estimate and confidence interval had there been no treatment switching:
use RPSFTM to estimate the causal parameter psi based on the log-rank test for counter-factual untreated survival times for both arms:
U = T_{off} + T_{on} e^{\psi}
.Fit the Cox proportional hazards model to the observed survival times on the treatment arm and the counter-factual untreated survival times on the control arm to obtain the hazard ratio estimate.
Use either the log-rank test p-value for the treatment policy strategy or bootstrap to construct the confidence interval for hazard ratio.
Value
A list with the following components:
-
psi
: The estimated causal parameter for RPSFTM. -
psi_CI
: The confidence interval for psi. -
psi_type
: The type of psi estimate, either "grid search" or "root finding". -
Sstar
: A data frame containing the counter-factual untreated survival times and the event indicators. -
kmstar
: A data frame containing the Kaplan-Meier estimates based on the counter-factual untreated survival times by treatment arm. -
eval_z
: A data frame containing the log-rank test Z-statistics evaluated at a sequence of psi values. Used to plot and to check if the range of psi values to search for the solution and limits of confidence interval of psi need be modified. -
pvalue
: The p-value of the log-rank test based on the treatment policy strategy. -
hr
: The estimated hazard ratio from the Cox model. -
hr_CI
: The confidence interval for hazard ratio. -
hr_CI_type
: The type of confidence interval for hazard ratio, either "log-rank p-value" or "bootstrap quantile".
Author(s)
Kaifeng Lu, kaifenglu@gmail.com
Examples
library(dplyr)
data <- immdef %>% mutate(rx = 1-xoyrs/progyrs)
fit <- rpsft(data, time = "progyrs", event = "prog", treat = "imm",
rx = "rx", censor_time = "censyrs", boot = 0)
c(fit$hr, fit$hr_CI)