kmpower {lrstat}R Documentation

Power for difference in milestone survival probabilities

Description

Estimates the power for testing the difference in milestone survival probabilities in a two-sample survival design.

Usage

kmpower(
  kMax = 1L,
  informationRates = NA_real_,
  efficacyStopping = NA_integer_,
  futilityStopping = NA_integer_,
  criticalValues = NA_real_,
  alpha = 0.025,
  typeAlphaSpending = "sfOF",
  parameterAlphaSpending = NA_real_,
  userAlphaSpending = NA_real_,
  futilityBounds = NA_real_,
  typeBetaSpending = "none",
  parameterBetaSpending = NA_real_,
  milestone = NA_real_,
  survDiffH0 = 0,
  allocationRatioPlanned = 1,
  accrualTime = 0L,
  accrualIntensity = NA_real_,
  piecewiseSurvivalTime = 0L,
  stratumFraction = 1L,
  lambda1 = NA_real_,
  lambda2 = NA_real_,
  gamma1 = 0L,
  gamma2 = 0L,
  accrualDuration = NA_real_,
  followupTime = NA_real_,
  fixedFollowup = 0L,
  spendingTime = NA_real_,
  studyDuration = NA_real_
)

Arguments

kMax

The maximum number of stages.

informationRates

The information rates. Defaults to (1:kMax) / kMax if left unspecified.

efficacyStopping

Indicators of whether efficacy stopping is allowed at each stage. Defaults to true if left unspecified.

futilityStopping

Indicators of whether futility stopping is allowed at each stage. Defaults to true if left unspecified.

criticalValues

Upper boundaries on the z-test statistic scale for stopping for efficacy.

alpha

The significance level. Defaults to 0.025.

typeAlphaSpending

The type of alpha spending. One of the following: "OF" for O'Brien-Fleming boundaries, "P" for Pocock boundaries, "WT" for Wang & Tsiatis boundaries, "sfOF" for O'Brien-Fleming type spending function, "sfP" for Pocock type spending function, "sfKD" for Kim & DeMets spending function, "sfHSD" for Hwang, Shi & DeCani spending function, "user" for user defined spending, and "none" for no early efficacy stopping. Defaults to "sfOF".

parameterAlphaSpending

The parameter value for the alpha spending. Corresponds to Delta for "WT", rho for "sfKD", and gamma for "sfHSD".

userAlphaSpending

The user defined alpha spending. Cumulative alpha spent up to each stage.

futilityBounds

Lower boundaries on the z-test statistic scale for stopping for futility at stages 1, ..., kMax-1. Defaults to rep(-6, kMax-1) if left unspecified. The futility bounds are non-binding for the calculation of critical values.

typeBetaSpending

The type of beta spending. One of the following: "sfOF" for O'Brien-Fleming type spending function, "sfP" for Pocock type spending function, "sfKD" for Kim & DeMets spending function, "sfHSD" for Hwang, Shi & DeCani spending function, and "none" for no early futility stopping. Defaults to "none".

parameterBetaSpending

The parameter value for the beta spending. Corresponds to rho for "sfKD", and gamma for "sfHSD".

milestone

The milestone time at which to calculate the survival probability.

survDiffH0

The difference in milestone survival probabilities under the null hypothesis. Defaults to 0 for superiority test.

allocationRatioPlanned

Allocation ratio for the active treatment versus control. Defaults to 1 for equal randomization.

accrualTime

A vector that specifies the starting time of piecewise Poisson enrollment time intervals. Must start with 0, e.g., c(0, 3) breaks the time axis into 2 accrual intervals: [0, 3) and [3, Inf).

accrualIntensity

A vector of accrual intensities. One for each accrual time interval.

piecewiseSurvivalTime

A vector that specifies the starting time of piecewise exponential survival time intervals. Must start with 0, e.g., c(0, 6) breaks the time axis into 2 event intervals: [0, 6) and [6, Inf). Defaults to 0 for exponential distribution.

stratumFraction

A vector of stratum fractions that sum to 1. Defaults to 1 for no stratification.

lambda1

A vector of hazard rates for the event in each analysis time interval by stratum for the active treatment group.

lambda2

A vector of hazard rates for the event in each analysis time interval by stratum for the control group.

gamma1

The hazard rate for exponential dropout, a vector of hazard rates for piecewise exponential dropout applicable for all strata, or a vector of hazard rates for dropout in each analysis time interval by stratum for the active treatment group.

gamma2

The hazard rate for exponential dropout, a vector of hazard rates for piecewise exponential dropout applicable for all strata, or a vector of hazard rates for dropout in each analysis time interval by stratum for the control group.

accrualDuration

Duration of the enrollment period.

followupTime

Follow-up time for the last enrolled subject.

fixedFollowup

Whether a fixed follow-up design is used. Defaults to 0 for variable follow-up.

spendingTime

A vector of length kMax for the error spending time at each analysis. Defaults to missing, in which case, it is the same as informationRates.

studyDuration

Study duration for fixed follow-up design. Defaults to missing, which is to be replaced with the sum of accrualDuration and followupTime. If provided, the value is allowed to be less than the sum of accrualDuration and followupTime.

Value

An S3 class kmpower object with 3 components:

Author(s)

Kaifeng Lu, kaifenglu@gmail.com

Examples

# Piecewise accrual, piecewise exponential survival, and 5% dropout by
# the end of 1 year.

kmpower(kMax = 2, informationRates = c(0.8, 1),
        alpha = 0.025, typeAlphaSpending = "sfOF",
        milestone = 18,
        allocationRatioPlanned = 1, accrualTime = seq(0, 8),
        accrualIntensity = 26/9*seq(1, 9),
        piecewiseSurvivalTime = c(0, 6),
        stratumFraction = c(0.2, 0.8),
        lambda1 = c(0.0533, 0.0309, 1.5*0.0533, 1.5*0.0309),
        lambda2 = c(0.0533, 0.0533, 1.5*0.0533, 1.5*0.0533),
        gamma1 = -log(1-0.05)/12,
        gamma2 = -log(1-0.05)/12, accrualDuration = 22,
        followupTime = 18, fixedFollowup = FALSE)


[Package lrstat version 0.2.9 Index]