getDesignSlopeDiffMMRM {lrstat}R Documentation

Group sequential design for two-sample slope difference from the MMRM model

Description

Obtains the power given sample size or obtains the sample size given power for two-sample slope difference from the growth curve MMRM model.

Usage

getDesignSlopeDiffMMRM(
  beta = NA_real_,
  slopeDiffH0 = 0,
  slopeDiff = 0.5,
  stDev = 1,
  stDevIntercept = 1,
  stDevSlope = 1,
  corrInterceptSlope = 0.5,
  w = NA_real_,
  N = NA_real_,
  accrualTime = 0,
  accrualIntensity = NA_real_,
  piecewiseSurvivalTime = 0,
  gamma1 = 0,
  gamma2 = 0,
  accrualDuration = NA_real_,
  followupTime = NA_real_,
  allocationRatioPlanned = 1,
  normalApproximation = TRUE,
  rounding = TRUE,
  kMax = 1L,
  informationRates = NA_real_,
  efficacyStopping = NA_integer_,
  futilityStopping = NA_integer_,
  criticalValues = NA_real_,
  alpha = 0.025,
  typeAlphaSpending = "sfOF",
  parameterAlphaSpending = NA_real_,
  userAlphaSpending = NA_real_,
  futilityBounds = NA_real_,
  typeBetaSpending = "none",
  parameterBetaSpending = NA_real_,
  userBetaSpending = NA_real_,
  spendingTime = NA_real_
)

Arguments

beta

The type II error.

slopeDiffH0

The slope difference under the null hypothesis. Defaults to 0.

slopeDiff

The slope difference under the alternative hypothesis.

stDev

The standard deviation of the residual.

stDevIntercept

The standard deviation of the random intercept.

stDevSlope

The standard deviation of the random slope.

corrInterceptSlope

The correlation between the random intercept and random slope.

w

The number of time units per measurement visit in a period.

N

The number of measurement visits in a period.

accrualTime

A vector that specifies the starting time of piecewise Poisson enrollment time intervals. Must start with 0, e.g., c(0, 3) breaks the time axis into 2 accrual intervals: [0, 3) and [3, Inf).

accrualIntensity

A vector of accrual intensities. One for each accrual time interval.

piecewiseSurvivalTime

A vector that specifies the starting time of piecewise exponential survival time intervals. Must start with 0, e.g., c(0, 6) breaks the time axis into 2 event intervals: [0, 6) and [6, Inf). Defaults to 0 for exponential distribution.

gamma1

The hazard rate for exponential dropout, or a vector of hazard rates for piecewise exponential dropout for the active treatment group.

gamma2

The hazard rate for exponential dropout, or a vector of hazard rates for piecewise exponential dropout for the control group.

accrualDuration

Duration of the enrollment period.

followupTime

Follow-up time for the last enrolled subject.

allocationRatioPlanned

Allocation ratio for the active treatment versus control. Defaults to 1 for equal randomization.

normalApproximation

The type of computation of the p-values. If TRUE, the variance is assumed to be known, otherwise the calculations are performed with the t distribution. The degrees of freedom for the t-distribution for testing the slope difference is calculated using the containment method, and is equal to the total number of observations minus two times the total number of subjects. The exact calculation using the t distribution is only implemented for the fixed design.

rounding

Whether to round up sample size. Defaults to 1 for sample size rounding.

kMax

The maximum number of stages.

informationRates

The information rates. Defaults to (1:kMax) / kMax if left unspecified.

efficacyStopping

Indicators of whether efficacy stopping is allowed at each stage. Defaults to true if left unspecified.

futilityStopping

Indicators of whether futility stopping is allowed at each stage. Defaults to true if left unspecified.

criticalValues

Upper boundaries on the z-test statistic scale for stopping for efficacy.

alpha

The significance level. Defaults to 0.025.

typeAlphaSpending

The type of alpha spending. One of the following: "OF" for O'Brien-Fleming boundaries, "P" for Pocock boundaries, "WT" for Wang & Tsiatis boundaries, "sfOF" for O'Brien-Fleming type spending function, "sfP" for Pocock type spending function, "sfKD" for Kim & DeMets spending function, "sfHSD" for Hwang, Shi & DeCani spending function, "user" for user defined spending, and "none" for no early efficacy stopping. Defaults to "sfOF".

parameterAlphaSpending

The parameter value for the alpha spending. Corresponds to Delta for "WT", rho for "sfKD", and gamma for "sfHSD".

userAlphaSpending

The user defined alpha spending. Cumulative alpha spent up to each stage.

futilityBounds

Lower boundaries on the z-test statistic scale for stopping for futility at stages 1, ..., kMax-1. Defaults to rep(-6, kMax-1) if left unspecified. The futility bounds are non-binding for the calculation of critical values.

typeBetaSpending

The type of beta spending. One of the following: "sfOF" for O'Brien-Fleming type spending function, "sfP" for Pocock type spending function, "sfKD" for Kim & DeMets spending function, "sfHSD" for Hwang, Shi & DeCani spending function, "user" for user defined spending, and "none" for no early futility stopping. Defaults to "none".

parameterBetaSpending

The parameter value for the beta spending. Corresponds to rho for "sfKD", and gamma for "sfHSD".

userBetaSpending

The user defined beta spending. Cumulative beta spent up to each stage.

spendingTime

A vector of length kMax for the error spending time at each analysis. Defaults to missing, in which case, it is the same as informationRates.

Details

We use the following random-effects model to compare two slopes:

y_{ij} = \alpha + (\beta + \gamma x_i) t_j + a_i + b_i t_j + e_{ij},

where

By accounting for randomization, we improve the efficiency for estimating the difference in slopes. We also allow for non-equal spacing of the time points and missing data due to dropouts.

Value

An S3 class designSlopeDiffMMRM object with three components:

Author(s)

Kaifeng Lu, kaifenglu@gmail.com

References

Daniel O. Scharfstein, Anastasios A. Tsiatis, and James M. Robins. Semiparametric efficiency and its implication on the design and analysis of group-sequential studies. Journal of the American Statistical Association 1997; 92:1342-1350.

Examples


(design1 <- getDesignSlopeDiffMMRM(
  beta = 0.2, slopeDiff = log(1.15)/52,
  stDev = sqrt(.182),
  stDevIntercept = sqrt(.238960),
  stDevSlope = sqrt(.000057),
  corrInterceptSlope = .003688/sqrt(.238960*.000057),
  w = 8,
  N = 10000,
  accrualIntensity = 15,
  gamma1 = 1/(4.48*52),
  gamma2 = 1/(4.48*52),
  accrualDuration = NA,
  followupTime = 8,
  alpha = 0.025))


[Package lrstat version 0.2.6 Index]