ogre {lrmest} | R Documentation |
Ordinary Generalized Ridge Regression Estimator
Description
This function can be used to find the Ordinary Generalized Ridge Regression Estimated values and corresponding scalar Mean Square Error (MSE) value. Further the variation of MSE can be determined graphically.
Usage
ogre(formula, k, data = NULL, na.action, ...)
Arguments
formula |
in this section interested model should be given. This should be given as a |
k |
a single numeric value or a vector of set of numeric values. See ‘Example’. |
data |
an optional data frame, list or environment containing the variables in the model. If not found in |
na.action |
if the dataset contain |
... |
currently disregarded. |
Details
Since formula has an implied intercept term, use either y ~ x - 1
or y ~ 0 + x
to remove the intercept.
Use plot
so as to obtain the variation of scalar MSE values graphically. See ‘Examples’.
Value
If k
is a single numeric values then ogre
returns the Ordinary Generalized Ridge Regression Estimated values, standard error values, t statistic values, p value and corresponding scalar MSE value.
If k
is a vector of set of numeric values then ogre
returns all the scalar MSE values and corresponding parameter values of Ordinary Generalized Ridge Regression Estimator.
Author(s)
P.Wijekoon, A.Dissanayake
References
Arumairajan, S. and Wijekoon, P. (2015) ] Optimal Generalized Biased Estimator in Linear Regression Model in Open Journal of Statistics, pp. 403–411
Hoerl, A.E. and Kennard, R.W. (1970) Ridge Regression Biased estimation for non orthogonal problem, 12, pp.55–67.
See Also
Examples
## Portland cement data set is used.
data(pcd)
k<-0.01
ogre(Y~X1+X2+X3+X4-1,k,data=pcd)
# Model without the intercept is considered.
## To obtain the variation of MSE of
# Ordinary Generalized Ridge Regression Estimator.
data(pcd)
k<-c(0:10/10)
plot(ogre(Y~X1+X2+X3+X4-1,k,data=pcd),
main=c("Plot of MSE of Ordinary Generalized Ridge Regression
Estimator"),type="b",cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3,cex=0.6)
mseval<-data.frame(ogre(Y~X1+X2+X3+X4-1,k,data=pcd))
smse<-mseval[order(mseval[,2]),]
points(smse[1,],pch=16,cex=0.6)