ogaul {lrmest} | R Documentation |
Ordinary Generalized Almost Unbiased Liu Estimator
Description
ogaul
can be used to find the Ordinary Generalized Almost Unbiased Liu Estimated values and corresponding scalar Mean Square Error (MSE) value in the linear model. Further the variation of MSE can be shown graphically.
Usage
ogaul(formula, d, data = NULL, na.action, ...)
Arguments
formula |
in this section interested model should be given. This should be given as a |
d |
a single numeric value or a vector of set of numeric values. See ‘Example’. |
data |
an optional data frame, list or environment containing the variables in the model. If not found in |
na.action |
if the dataset contain |
... |
currently disregarded. |
Details
Since formula has an implied intercept term, use either y ~ x - 1
or y ~ 0 + x
to remove the intercept.
Use plot
so as to obtained the variation of scalar MSE values graphically. See ‘Examples’.
Value
If d
is a single numeric value then ogaul
returns the Ordinary Generalized Almost Unbiased Liu Estimated values, standard error values, t statistic values, p value and corresponding scalar MSE value.
If d
is a vector of set of numeric values then ogaul
returns all the scalar MSE values and corresponding parameter values of Ordinary Generalized Almost Unbiased Liu Estimator.
Author(s)
P.Wijekoon, A.Dissanayake
References
Arumairajan, S. and Wijekoon, P. (2015) ] Optimal Generalized Biased Estimator in Linear Regression Model in Open Journal of Statistics, pp. 403–411
Akdeniz, F. and Erol, H. (2003) Mean Squared Error Matrix Comparisons of Some Biased Estimators in Linear Regression in Communications in Statistics - Theory and Methods, volume 32 DOI:10.1081/STA-120025385
See Also
Examples
## Portland cement data set is used.
data(pcd)
d<-0.05
ogaul(Y~X1+X2+X3+X4-1,d,data=pcd)
# Model without the intercept is considered.
## To obtain the variation of MSE of
# Ordinary Generalized Almost Unbiased Liu Estimator.
data(pcd)
d<-c(1:10/10)
plot(ogaul(Y~X1+X2+X3+X4-1,d,data=pcd),
main=c("Plot of MSE of Ordinary Generalized Almost Unbiased Liu Estimator"),
type="b",cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3,cex=0.6)
mseval<-data.frame(ogaul(Y~X1+X2+X3+X4-1,d,data=pcd))
smse<-mseval[order(mseval[,2]),]
points(smse[1,],pch=16,cex=0.6)