aur {lrmest} | R Documentation |
Almost Unbiased Ridge Estimator
Description
aur
can be used to find the Almost Unbiased Ridge Estimated values and corresponding scalar Mean Square Error (MSE) value in the linear model. Further the variation of MSE can be shown graphically.
Usage
aur(formula, k, data = NULL, na.action, ...)
Arguments
formula |
in this section interested model should be given. This should be given as a |
k |
a single numeric value or a vector of set of numeric values. See ‘Examples’. |
data |
an optional data frame, list or environment containing the variables in the model. If not found in |
na.action |
if the dataset contain |
... |
currently disregarded. |
Details
Since formula has an implied intercept term, use either y ~ x - 1
or y ~ 0 + x
to remove the intercept.
Use plot
so as to obtained the variation of scalar MSE values graphically. See ‘Examples’.
Value
If k
is a single numeric values then aur
returns the Almost Unbiased Ridge Estimated values, standard error values, t statistic values, p value and corresponding scalar MSE value.
If k
is a vector of set of numeric values then aur
returns all the scalar MSE values and corresponding parameter values of Almost Unbiased Ridge Estimator.
Author(s)
P.Wijekoon, A.Dissanayake
References
Akdeniz, F. and Erol, H. (2003) Mean Squared Error Matrix Comparisons of Some Biased Estimators in Linear Regression in Communications in Statistics - Theory and Methods, volume 32 DOI:10.1081/STA-120025385
See Also
Examples
## Portland cement data set is used.
data(pcd)
k<-0.05
aur(Y~X1+X2+X3+X4-1,k,data=pcd) # Model without the intercept is considered.
## To obtain the variation of MSE of Almost Unbiased Ridge Estimator.
data(pcd)
k<-c(0:10/10)
plot(aur(Y~X1+X2+X3+X4-1,k,data=pcd),
main=c("Plot of MSE of Almost Unbiased Ridge Estimator"),type="b",
cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3,cex=0.6)
mseval<-data.frame(aur(Y~X1+X2+X3+X4-1,k,data=pcd))
smse<-mseval[order(mseval[,2]),]
points(smse[1,],pch=16,cex=0.6)