SKD {lqr} | R Documentation |
Skew Family Distributions
Description
Density, distribution function, quantile function and random generation for a Skew Family Distribution useful for quantile regression. This family of distribution includes skewed versions of the Normal, Student's t, Laplace, Slash and Contaminated Normal distribution, all with location parameter equal to mu
, scale parameter sigma
and skewness parameter p
.
Usage
dSKD(y, mu = 0, sigma = 1, p = 0.5, dist = "normal", nu = "", gamma = "")
pSKD(q, mu = 0, sigma = 1, p = 0.5, dist = "normal", nu = "", gamma = "",
lower.tail = TRUE)
qSKD(prob, mu = 0, sigma = 1, p = 0.5, dist = "normal", nu = "", gamma = "",
lower.tail = TRUE)
rSKD(n, mu = 0, sigma = 1, p = 0.5, dist = "normal", nu = "", gamma = "")
Arguments
y , q |
vector of quantiles. |
prob |
vector of probabilities. |
n |
number of observations. |
mu |
location parameter. |
sigma |
scale parameter. |
p |
skewness parameter. |
dist |
represents the distribution to be used for the error term. The values are |
nu |
It represents the degrees of freedom when |
gamma |
It represents a scale factor for the contaminated normal distribution. When is not provided, we use the MLE. |
lower.tail |
logical; if TRUE (default), probabilities are P[X |
Details
If mu
, sigma
, p
or dist
are not specified they assume the default values of 0, 1, 0.5 and normal
, respectively, belonging to the Symmetric Standard Normal Distribution denoted by SKN(0,1,0.5)
.
The scale parameter sigma
must be positive and non zero. The skew parameter p
must be between zero and one (0<p
<1).
This family of distributions generalize the skew distributions in Wichitaksorn et.al. (2014) as an scale mixture of skew normal distribution. Also the Three-Parameter Asymmetric Laplace Distribution defined in Koenker and Machado (1999) is a special case.
Value
dSKD
gives the density, pSKD
gives the distribution function, qSKD
gives the quantile function, and rSKD
generates a random sample.
The length of the result is determined by n for rSKD
, and is the maximum of the lengths of the numerical arguments for the other functions dSKD
, pSKD
and qSKD
.
Note
The numerical arguments other than n
are recycled to the length of the result.
Author(s)
Christian E. Galarza <cgalarza88@gmail.com>, Luis Benites <lsanchez@ime.usp.br> and Victor H. Lachos <hlachos@ime.unicamp.br>
Maintainer: Christian E. Galarza <cgalarza88@gmail.com>
References
Galarza, C., Lachos, V. H., Cabral, C. R. B., & Castro, C. L. (2017). Robust quantile regression using a generalized class of skewed distributions. Stat, 6(1), 113-130.
Wichitaksorn, N., Choy, S. T., & Gerlach, R. (2014). A generalized class of skew distributions and associated robust quantile regression models. Canadian Journal of Statistics, 42(4), 579-596.
See Also
Examples
## Let's plot (Normal Vs. Student-t's with 4 df)
##Density
sseq = seq(15,65,length.out = 1000)
dens = dSKD(y=sseq,mu=50,sigma=3,p=0.75)
plot(sseq,dens,type="l",lwd=2,col="red",xlab="x",ylab="f(x)", main="Normal Vs. t(4) densities")
dens2 = dSKD(y=sseq,mu=50,sigma=3,p=0.75,dist="t",nu=4)
lines(sseq,dens2,type="l",lwd=2,col="blue",lty=2)
## Distribution Function
df = pSKD(q=sseq,mu=50,sigma=3,p=0.75,dist = "laplace")
plot(sseq,df,type="l",lwd=2,col="blue",xlab="x",ylab="F(x)", main="Laplace Distribution function")
abline(h=1,lty=2)
##Inverse Distribution Function
prob = seq(0.001,0.999,length.out = 1000)
idf = qSKD(prob=prob,mu=50,sigma=3,p=0.25,dist="cont",nu=0.3,gamma=0.1) # 1 min appox
plot(prob,idf,type="l",lwd=2,col="gray30",xlab="x",ylab=expression(F^{-1}~(x)))
title(main="Skew Cont. Normal Inverse Distribution function")
abline(v=c(0,1),lty=2)
#Random Sample Histogram
sample = rSKD(n=20000,mu=50,sigma=3,p=0.2,dist="slash",nu=3)
seqq2 = seq(25,100,length.out = 1000)
dens3 = dSKD(y=seqq2,mu=50,sigma=3,p=0.2,dist="slash",nu=3)
hist(sample,breaks = 70,freq = FALSE,ylim=c(0,1.05*max(dens3,na.rm = TRUE)),main="")
title(main="Histogram and True density")
lines(seqq2,dens3,col="blue",lwd=2)