PCA {lpda} | R Documentation |
Principal Component Analysis
Description
Computes a Principal Component Analysis when both when p>n and when p<=n.
Usage
PCA(X)
Arguments
X |
Matrix or data.frame with variables in columns and observations in rows. |
Value
eigen |
A eigen class object with eigenvalues and eigenvectors of the analysis. |
var.exp |
A matrix containing the explained variance for each component and the cumulative variance. |
scores |
Scores of the PCA analysis. |
loadings |
Loadings of the PCA analysis. |
Author(s)
Maria Jose Nueda, mj.nueda@ua.es
Examples
## Simulate data matrix with 500 variables and 10 observations
datasim = matrix(sample(0:100, 5000, replace = TRUE), nrow = 10)
## PCA
myPCA = PCA(datasim)
## Extracting the variance explained by each principal component
myPCA$var.exp
[Package lpda version 1.0.1 Index]