vcov.lpcde {lpcde} | R Documentation |
Variance-Covariance
Description
The vcov method for local polynomial conditional density objects.
Usage
## S3 method for class 'lpcde'
vcov(object, ...)
Arguments
object |
Class "lpdensity" object, obtained by calling |
... |
Additional options. |
Details
Vcov method for local polynomial density conditional estimation
Value
stdErr |
A matrix containing grid points and standard errors using p- and q-th order local polynomials. |
CovMat |
The variance-covariance matrix corresponding to |
CovMat_RBC |
The variance-covariance matrix corresponding to |
Author(s)
Matias D. Cattaneo, Princeton University. cattaneo@princeton.edu.
Rajita Chandak (maintainer), Princeton University. rchandak@princeton.edu.
Michael Jansson, University of California Berkeley. mjansson@econ.berkeley.edu.
Xinwei Ma, University of California San Diego. x1ma@ucsd.edu.
See Also
lpcde
for local polynomial conditional density estimation.
Supported methods: plot.lpcde
, print.lpcde
,
summary.lpcde
,
Examples
n=100
x_data = as.matrix(rnorm(n, mean=0, sd=1))
y_data = as.matrix(rnorm(n, mean=0, sd=1))
y_grid = stats::quantile(y_data, seq(from=0.1, to=0.9, by=0.1))
# density estimation
model1 = lpcde::lpcde(x_data=x_data, y_data=y_data, y_grid=y_grid, x=0, bw=0.5)
vcov(model1)