lpbwcde {lpcde} | R Documentation |
Data-driven bandwidth selection for local polynomial conditional density estimators
Description
lpbwcde
implements the bandwidth selection methods for local
polynomial based conditionaldensity (and derivatives) estimation proposed and studied
in (Cattaneo et al. 2024).
Companion command: lpcde
for estimation and robust bias-corrected inference.
Related Stata
and R
packages useful for nonparametric estimation and inference are
available at https://nppackages.github.io/.
Usage
lpbwcde(
y_data,
x_data,
x,
y_grid = NULL,
p = NULL,
q = NULL,
grid_spacing = "",
ng = NULL,
mu = NULL,
nu = NULL,
kernel_type = c("epanechnikov", "triangular", "uniform"),
bw_type = c("mse-rot", "imse-rot"),
regularize = NULL
)
Arguments
y_data |
Numeric matrix/data frame, the raw data of independent. |
x_data |
Numeric matrix/data frame, the raw data of covariates. |
x |
Numeric, specifies the evaluation point in the x-direction. Default is median of the dataset. |
y_grid |
Numeric, specifies the grid of evaluation points. When set to default, grid points will be chosen as 0.05-0.95 percentiles of the data, with a step size of 0.05. |
p |
Nonnegative integer, specifies the order of the local polynomial for |
q |
Nonnegative integer, specifies the order of the local polynomial for |
grid_spacing |
String, If equal to "quantile" will generate quantile-spaced grid evaluation points, otherwise will generate equally spaced points. |
ng |
Int, number of grid points to be used in generating bandwidth estimates. |
mu |
Nonnegative integer, specifies the derivative with respect to |
nu |
Nonnegative integer, specifies the derivative with respect to |
kernel_type |
String, specifies the kernel function, should be one of
|
bw_type |
String, specifies the method for data-driven bandwidth selection. This option will be
ignored if |
regularize |
Boolean (default TRUE). Option to regularize bandwidth selection to have atleast 20+max(p, q)+1 datapoints when evaluating the estimator. |
Value
BW |
A matrix containing (1) |
opt |
A list containing options passed to the function. |
Author(s)
Matias D. Cattaneo, Princeton University. cattaneo@princeton.edu.
Rajita Chandak (maintainer), Princeton University. rchandak@princeton.edu.
Michael Jansson, University of California Berkeley. mjansson@econ.berkeley.edu.
Xinwei Ma, University of California San Diego. x1ma@ucsd.edu.
References
Cattaneo MD, Chandak R, Jansson M, Ma X (2024). “Local Polynomial Conditional Density Estimators.” Bernoulli.
See Also
Supported methods: coef.lpbwcde
,
print.lpbwcde
, summary.lpbwcde
.
Examples
# Generate a random sample
set.seed(42);
x_data = rnorm(2000)
y_data = rnorm(2000, mean=x_data)
x = 0
# Construct bandwidth
bw1 <- lpbwcde(y_data = y_data, x_data = x_data, x=x, bw_type = "mse-rot")
summary(bw1)
# Display bandwidths for a subset of y_grid points
summary(bw1, y_grid=bw1$BW[2:5, "y_grid"])