confint.lpcde {lpcde} | R Documentation |
Confint method for local polynomial density conditional estimation
Description
The confint method for local polynomial conditional density objects.
Usage
## S3 method for class 'lpcde'
confint(
object,
parm = NULL,
level = 0.95,
CIuniform = FALSE,
CIsimul = 2000,
...
)
Arguments
object |
Class "lpdensity" object, obtained by calling |
parm |
Integer, indicating which parameters are to be given confidence intervals. |
level |
Numeric scalar between 0 and 1, the confidence level for computing confidence intervals/bands. Equivalent to (1-significance level). |
CIuniform |
|
CIsimul |
Positive integer, specifies the number of simulations used to construct critical values (default is |
... |
Additional options, including (i) |
Value
Estimate |
A matrix containing grid points, estimates and confidence interval end points using p- and q-th order local polynomials as well as bias-corrected estimates and corresponding confidence intervals. |
crit_val |
The critical value used in computing the confidence interval end points. |
Author(s)
Matias D. Cattaneo, Princeton University. cattaneo@princeton.edu.
Rajita Chandak (maintainer), Princeton University. rchandak@princeton.edu.
Michael Jansson, University of California Berkeley. mjansson@econ.berkeley.edu.
Xinwei Ma, University of California San Diego. x1ma@ucsd.edu.
See Also
lpcde
for local polynomial conditional density estimation.
Supported methods: coef.lpcde
, confint.lpcde
,
plot.lpcde
, print.lpcde
,
summary.lpcde
, vcov.lpcde
Examples
n=100
x_data = as.matrix(rnorm(n, mean=0, sd=1))
y_data = as.matrix(rnorm(n, mean=0, sd=1))
y_grid = stats::quantile(y_data, seq(from=0.1, to=0.9, by=0.1))
# density estimation
model1 = lpcde::lpcde(x_data=x_data, y_data=y_data, y_grid=y_grid, x=0, bw=0.5)
confint(model1)