gyr {lorentz} | R Documentation |
Gyr function
Description
Relativistic addition of three velocities
Usage
gyr(u, v, x)
gyr.a(u, v, x)
gyrfun(u, v)
Arguments
u , v , x |
Three-velocities, objects of class |
Details
Function gyr(u,v,x)
returns the three-vector
\mathrm{gyr}[u,v]x
.
Function gyrfun(u,v)
returns a function that returns a
three-vector; see examples.
The speed of light (1 by default) is not used directly by these
functions; set it with sol()
.
Note
Function gyr()
is slightly faster than gyr.a()
, which is
included for pedagogical reasons.
Function gyr()
is simply
add3(neg3(add3(u,v)),add3(u,add3(v,x)))
while function gyr.a()
uses the slower but more transparent
idiom
-(u+v) + (u+(v+x))
Author(s)
Robin K. S. Hankin
References
-
Ungar 2006. “Thomas precession: a kinematic effect of the algebra of Einstein's velocity addition law. Comments on ‘Deriving relativistic momentum and energy: I. Three-dimensional case’”. European Journal of Physics, 27:L17-L20.
-
Sbitneva 2001. “Nonassociative geometry of special relativity”. International Journal of Theoretical Physics, volume 40, number 1, pages 359–362
Examples
u <- r3vel(10)
v <- r3vel(10)
w <- r3vel(10)
x <- as.3vel(c(0.4,0.1,-0.5))
y <- as.3vel(c(0.1,0.2,-0.7))
z <- as.3vel(c(0.2,0.3,-0.1))
gyr(u,v,x) # gyr[u,v]x
f <- gyrfun(u,v)
g <- gyrfun(v,u)
f(x)
f(r3vel(10))
f(g(x)) - x # zero, by eqn 9
g(f(x)) - x # zero, by eqn 9
(x+y) - f(y+x) # zero by eqn 10
(u+(v+w)) - ((u+v)+f(w)) # zero by eqn 11
# Following taken from Sbitneva 2001:
rbind(x+(y+(x+z)) , (x+(y+x))+z) # left Bol property
rbind((x+y)+(x+y) , x+(y+(y+x))) # left Bruck property
sol(299792458) # speed of light in SI
as.3vel(c(1000,3000,1000)) + as.3vel(c(1000,3000,1000))
## should be close to Galilean result
sol(1) # revert to default c=1