DFIT {lordif} | R Documentation |
calculates DFIT statistics
Description
Calculates DFIT statistics using an object of class "lordif"
Usage
DFIT(obj)
Arguments
obj |
an object of class "lordif" |
Details
Calculates DFIT statistics, including the compensatory differential item functioning (CDIF), the non-compensatory differential item functioning (NCDIF), and the differential test functioning (DTF), based on an object returned from lordif.
Value
CDIF |
a data frame of dimension ni by (ng-1), containing compensatory differential item functioning statistics for ni items and (ng-1) groups |
NCDIF |
a data frame containing non-compensatory differential item functioning statistics |
DTF |
the Differential Test Functioning (DTF) statistic (Raju, van der Linden, & Fleer, 1995) |
ipar |
a list of item parameter estimates by group |
TCC |
a list of test characteristic functions by group |
Author(s)
Seung W. Choi <choi.phd@gmail.com>
References
Oshima, T., & Morris, S. (2008). Raju's differential functioning of items and tests (DFIT). Educational Measurement: Issues and Practice, 27, 43-50.
Raju, N. S., van der Linden, W. J., & Fleer, P. F., (1995). An IRT-based internal measure of test bias with application of differential item functioning. Applied Psychological Measurement, 19, 353-368.
See Also
Examples
##load PROMIS Anxiety sample data (n=766)
## Not run: data(Anxiety)
##age : 0=younger than 65 or 1=65 or older
##run age-related DIF on all 29 items (takes about a minute)
## Not run: age.DIF <- lordif(Anxiety[paste("R",1:29,sep="")],Anxiety$age)
##run DFIT
## Not run: age.DIF.DFIT <- DFIT(age.DIF)