| relative_eff {loo} | R Documentation |
Convenience function for computing relative efficiencies
Description
relative_eff() computes the the MCMC effective sample size divided by
the total sample size.
Usage
relative_eff(x, ...)
## Default S3 method:
relative_eff(x, chain_id, ...)
## S3 method for class 'matrix'
relative_eff(x, chain_id, ..., cores = getOption("mc.cores", 1))
## S3 method for class 'array'
relative_eff(x, ..., cores = getOption("mc.cores", 1))
## S3 method for class ''function''
relative_eff(
x,
chain_id,
...,
cores = getOption("mc.cores", 1),
data = NULL,
draws = NULL
)
## S3 method for class 'importance_sampling'
relative_eff(x, ...)
Arguments
x |
A vector, matrix, 3-D array, or function. See the Methods (by
class) section below for details on specifying |
chain_id |
A vector of length |
cores |
The number of cores to use for parallelization. |
data, draws, ... |
Same as for the |
Value
A vector of relative effective sample sizes.
Methods (by class)
-
relative_eff(default): A vector of lengthS(posterior sample size). -
relative_eff(matrix): AnSbyNmatrix, whereSis the size of the posterior sample (with all chains merged) andNis the number of data points. -
relative_eff(array): AnIbyCbyNarray, whereIis the number of MCMC iterations per chain,Cis the number of chains, andNis the number of data points. -
relative_eff(`function`): A functionf()that takes argumentsdata_ianddrawsand returns a vector containing the log-likelihood for a single observationievaluated at each posterior draw. The function should be written such that, for each observationiin1:N, evaluatingf(data_i = data[i,, drop=FALSE], draws = draws)
results in a vector of length
S(size of posterior sample). The log-likelihood function can also have additional arguments butdata_ianddrawsare required.If using the function method then the arguments
dataanddrawsmust also be specified in the call toloo():-
data: A data frame or matrix containing the data (e.g. observed outcome and predictors) needed to compute the pointwise log-likelihood. For each observationi, theith row ofdatawill be passed to thedata_iargument of the log-likelihood function. -
draws: An object containing the posterior draws for any parameters needed to compute the pointwise log-likelihood. Unlikedata, which is indexed by observation, for each observation the entire objectdrawswill be passed to thedrawsargument of the log-likelihood function. The
...can be used if your log-likelihood function takes additional arguments. These arguments are used like thedrawsargument in that they are recycled for each observation.
-
-
relative_eff(importance_sampling): Ifxis an object of class"psis",relative_eff()simply returns ther_effattribute ofx.
Examples
LLarr <- example_loglik_array()
LLmat <- example_loglik_matrix()
dim(LLarr)
dim(LLmat)
rel_n_eff_1 <- relative_eff(exp(LLarr))
rel_n_eff_2 <- relative_eff(exp(LLmat), chain_id = rep(1:2, each = 500))
all.equal(rel_n_eff_1, rel_n_eff_2)