power.mmrm {longpower} | R Documentation |
Linear mixed model sample size calculations.
Description
This function performs the sample size calculation for a mixed model of repeated measures with general correlation structure. See Lu, Luo, & Chen (2008) for parameter definitions and other details. This function executes Formula (3) on page 4.
Usage
power.mmrm(
N = NULL,
Ra = NULL,
ra = NULL,
sigmaa = NULL,
Rb = NULL,
rb = NULL,
sigmab = NULL,
lambda = 1,
delta = NULL,
sig.level = 0.05,
power = NULL,
alternative = c("two.sided", "one.sided"),
tol = .Machine$double.eps^2
)
Arguments
N |
total sample size |
Ra |
correlation matrix for group a |
ra |
retention in group a |
sigmaa |
standard deviation of observation of interest in group a |
Rb |
correlation matrix for group a |
rb |
retention in group b |
sigmab |
standard deviation of observation of interest in group b. If
NULL, |
lambda |
allocation ratio |
delta |
effect size |
sig.level |
type one error |
power |
power |
alternative |
one- or two-sided test |
tol |
numerical tolerance used in root finding. |
Details
See Lu, Luo, & Chen (2008).
Value
The number of subject required per arm to attain the specified
power
given sig.level
and the other parameter estimates.
Author(s)
Michael C. Donohue
References
Lu, K., Luo, X., Chen, P.-Y. (2008) Sample size estimation for repeated measures analysis in randomized clinical trials with missing data. International Journal of Biostatistics, 4, (1)
See Also
power.mmrm.ar1
, lmmpower
,
diggle.linear.power
Examples
# reproduce Table 1 from Lu, Luo, & Chen (2008)
phi1 <- c(rep(1, 6), 2, 2)
phi2 <- c(1, 1, rep(2, 6))
lambda <- c(1, 2, sqrt(1/2), 1/2, 1, 2, 1, 2)
ztest <- ttest1 <- c()
for(i in 1:8){
Na <- (phi1[i] + lambda[i] * phi2[i])*(qnorm(0.05/2) + qnorm(1-0.90))^2*(0.5^-2)
Nb <- Na/lambda[i]
ztest <- c(ztest, Na + Nb)
v <- Na + Nb - 2
Na <- (phi1[i] + lambda[i] * phi2[i])*(qt(0.05/2, df = v) + qt(1-0.90, df = v))^2*(0.5^-2)
Nb <- Na/lambda[i]
ttest1 <- c(ttest1, Na + Nb)
}
data.frame(phi1, phi2, lambda, ztest, ttest1)
Ra <- matrix(0.25, nrow = 4, ncol = 4)
diag(Ra) <- 1
ra <- c(1, 0.90, 0.80, 0.70)
sigmaa <- 1
power.mmrm(Ra = Ra, ra = ra, sigmaa = sigmaa, delta = 0.5, power = 0.80)
power.mmrm(N = 174, Ra = Ra, ra = ra, sigmaa = sigmaa, delta = 0.5)
power.mmrm(N = 174, Ra = Ra, ra = ra, sigmaa = sigmaa, power = 0.80)
power.mmrm(Ra = Ra, ra = ra, sigmaa = sigmaa, delta = 0.5, power = 0.80, lambda = 2)
power.mmrm(N = 174, Ra = Ra, ra = ra, sigmaa = sigmaa, delta = 0.5, lambda = 2)
power.mmrm(N = 174, Ra = Ra, ra = ra, sigmaa = sigmaa, power = 0.80, lambda = 2)
# Extracting paramaters from gls objects with general correlation
# Create time index:
Orthodont$t.index <- as.numeric(factor(Orthodont$age, levels = c(8, 10, 12, 14)))
with(Orthodont, table(t.index, age))
fmOrth.corSym <- gls( distance ~ Sex * I(age - 11),
Orthodont,
correlation = corSymm(form = ~ t.index | Subject),
weights = varIdent(form = ~ 1 | age) )
summary(fmOrth.corSym)$tTable
C <- corMatrix(fmOrth.corSym$modelStruct$corStruct)[[1]]
sigmaa <- fmOrth.corSym$sigma *
coef(fmOrth.corSym$modelStruct$varStruct, unconstrained = FALSE)['14']
ra <- seq(1,0.80,length=nrow(C))
power.mmrm(N=100, Ra = C, ra = ra, sigmaa = sigmaa, power = 0.80)
# Extracting paramaters from gls objects with compound symmetric correlation
fmOrth.corCompSymm <- gls( distance ~ Sex * I(age - 11),
Orthodont,
correlation = corCompSymm(form = ~ t.index | Subject),
weights = varIdent(form = ~ 1 | age) )
summary(fmOrth.corCompSymm)$tTable
C <- corMatrix(fmOrth.corCompSymm$modelStruct$corStruct)[[1]]
sigmaa <- fmOrth.corCompSymm$sigma *
coef(fmOrth.corCompSymm$modelStruct$varStruct, unconstrained = FALSE)['14']
ra <- seq(1,0.80,length=nrow(C))
power.mmrm(N=100, Ra = C, ra = ra, sigmaa = sigmaa, power = 0.80)
# Extracting paramaters from gls objects with AR1 correlation
fmOrth.corAR1 <- gls( distance ~ Sex * I(age - 11),
Orthodont,
correlation = corAR1(form = ~ t.index | Subject),
weights = varIdent(form = ~ 1 | age) )
summary(fmOrth.corAR1)$tTable
C <- corMatrix(fmOrth.corAR1$modelStruct$corStruct)[[1]]
sigmaa <- fmOrth.corAR1$sigma *
coef(fmOrth.corAR1$modelStruct$varStruct, unconstrained = FALSE)['14']
ra <- seq(1,0.80,length=nrow(C))
power.mmrm(N=100, Ra = C, ra = ra, sigmaa = sigmaa, power = 0.80)
power.mmrm.ar1(N=100, rho = C[1,2], ra = ra, sigmaa = sigmaa, power = 0.80)