specARIMA {longmemo} | R Documentation |
Spectral Density of Fractional ARMA Process
Description
Calculate the spectral density of a fractional ARMA process with standard normal innovations and self-similarity parameter H.
Usage
specARIMA(eta, p, q, m)
Arguments
eta |
parameter vector |
p , q |
integers giving AR and MA order respectively. |
m |
sample size determining Fourier frequencies. |
Details
at the Fourier frequencies 2*\pi*j/n
, (j=1,\dots,(n-1)
),
cov(X(t),X(t+k)) = (sigma/(2*pi))*integral(exp(iuk)g(u)du).
— or rather – FIXME –
1. cov(X(t),X(t+k)) = integral[ exp(iuk)f(u)du ]
2. f() = theta1 * f*() ; spec = f*(), and integral[log(f*())] = 0
Value
an object of class "spec"
(see also spectrum
)
with components
freq |
the Fourier frequencies (in |
spec |
the scaled values spectral density |
theta1 |
the scale factor |
pq |
a vector of length two, |
eta |
a named vector |
method |
a character indicating the kind of model used. |
Author(s)
Jan Beran (principal) and Martin Maechler (fine tuning)
References
Beran (1994) and more, see ....
See Also
The spectral estimate for fractional Gaussian noise,
specFGN
.
In general, spectrum
and spec.ar
.
Examples
str(r.7 <- specARIMA(0.7, m = 256, p = 0, q = 0))
str(r.5 <- specARIMA(eta = c(H = 0.5, phi=c(-.06, 0.42, -0.36), psi=0.776),
m = 256, p = 3, q = 1))
plot(r.7)
plot(r.5)