| specARIMA {longmemo} | R Documentation |
Spectral Density of Fractional ARMA Process
Description
Calculate the spectral density of a fractional ARMA process with standard normal innovations and self-similarity parameter H.
Usage
specARIMA(eta, p, q, m)
Arguments
eta |
parameter vector |
p, q |
integers giving AR and MA order respectively. |
m |
sample size determining Fourier frequencies. |
Details
at the Fourier frequencies 2*\pi*j/n, (j=1,\dots,(n-1)),
cov(X(t),X(t+k)) = (sigma/(2*pi))*integral(exp(iuk)g(u)du).
— or rather – FIXME –
1. cov(X(t),X(t+k)) = integral[ exp(iuk)f(u)du ]
2. f() = theta1 * f*() ; spec = f*(), and integral[log(f*())] = 0
Value
an object of class "spec" (see also spectrum)
with components
freq |
the Fourier frequencies (in |
spec |
the scaled values spectral density |
theta1 |
the scale factor |
pq |
a vector of length two, |
eta |
a named vector |
method |
a character indicating the kind of model used. |
Author(s)
Jan Beran (principal) and Martin Maechler (fine tuning)
References
Beran (1994) and more, see ....
See Also
The spectral estimate for fractional Gaussian noise,
specFGN.
In general, spectrum and spec.ar.
Examples
str(r.7 <- specARIMA(0.7, m = 256, p = 0, q = 0))
str(r.5 <- specARIMA(eta = c(H = 0.5, phi=c(-.06, 0.42, -0.36), psi=0.776),
m = 256, p = 3, q = 1))
plot(r.7)
plot(r.5)