FEXPest {longmemo} | R Documentation |
Fractional EXP (FEXP) Model Estimator
Description
FEXPest(x, *)
computes Beran's Fractional EXP or ‘FEXP’
model estimator.
.ffreq(n)
returns the Fourier frequencies \frac{2\pi j}{n}
(of a time series of length n
).
Usage
FEXPest(x, order.poly, pvalmax, verbose = FALSE)
## S3 method for class 'FEXP'
print(x, digits = getOption("digits"), ...)
.ffreq(n, full = FALSE)
Arguments
x |
numeric vector representing a time series. |
order.poly |
integer specifying the maximal polynomial order that
should be taken into account. |
pvalmax |
maximal P-value – the other iteration stopping
criterion and “model selection tuning parameter”.
Setting this to |
verbose |
logical indicating if iteration output should be printed. |
digits , ... |
optional arguments for |
n |
a positive integer, typically the length of a time series. |
full |
logical indicating if |
Value
FEXPest(x,..)
returns an object of class FEXP
, basically a list with components
call |
the function |
n |
time series length |
H |
the “Hurst” parameter which is simply |
coefficients |
numeric 4-column matrix as returned from
|
order.poly |
the effective polynomial order used. |
max.order.poly |
the original |
early.stop |
logical indicating if |
spec |
the spectral estimate |
yper |
raw periodogram of (centered and scaled |
There currently are methods for print()
,
plot
and lines
(see
plot.FEXP
) for objects of class "FEXP"
.
Author(s)
Martin Maechler, using Beran's “main program” in Beran(1994), p.234 ff
References
Beran, Jan (1993) Fitting long-memory models by generalized linear regression. Biometrika 80, 817–822.
Beran, Jan (1994). Statistics for Long-Memory Processes; Chapman & Hall.
See Also
WhittleEst
;
the plot method, plot.FEXP
.
Examples
data(videoVBR)
(fE <- FEXPest(videoVBR, order = 3, pvalmax = .5))
(fE3 <- FEXPest(videoVBR, order = 3, pvalmax = 1 ))
(fE7 <- FEXPest(videoVBR, order = 3, pvalmax = 0.10))
##--> this also choses order 2, as "FE" :
all.equal(fE $coef,
fE7$coef) # -> TRUE
confint(fE)
confint(fE7, level = 0.99)
.ffreq(8)
.ffreq(8, TRUE)
stopifnot(all.equal((1:3)/4,
.ffreq(8) / pi))