| FEXPest {longmemo} | R Documentation |
Fractional EXP (FEXP) Model Estimator
Description
FEXPest(x, *) computes Beran's Fractional EXP or ‘FEXP’
model estimator.
.ffreq(n) returns the Fourier frequencies \frac{2\pi j}{n}
(of a time series of length n).
Usage
FEXPest(x, order.poly, pvalmax, verbose = FALSE)
## S3 method for class 'FEXP'
print(x, digits = getOption("digits"), ...)
.ffreq(n, full = FALSE)
Arguments
x |
numeric vector representing a time series. |
order.poly |
integer specifying the maximal polynomial order that
should be taken into account. |
pvalmax |
maximal P-value – the other iteration stopping
criterion and “model selection tuning parameter”.
Setting this to |
verbose |
logical indicating if iteration output should be printed. |
digits, ... |
optional arguments for |
n |
a positive integer, typically the length of a time series. |
full |
logical indicating if |
Value
FEXPest(x,..) returns an object of class FEXP, basically a list with components
call |
the function |
n |
time series length |
H |
the “Hurst” parameter which is simply |
coefficients |
numeric 4-column matrix as returned from
|
order.poly |
the effective polynomial order used. |
max.order.poly |
the original |
early.stop |
logical indicating if |
spec |
the spectral estimate |
yper |
raw periodogram of (centered and scaled |
There currently are methods for print(),
plot and lines (see
plot.FEXP) for objects of class "FEXP".
Author(s)
Martin Maechler, using Beran's “main program” in Beran(1994), p.234 ff
References
Beran, Jan (1993) Fitting long-memory models by generalized linear regression. Biometrika 80, 817–822.
Beran, Jan (1994). Statistics for Long-Memory Processes; Chapman & Hall.
See Also
WhittleEst;
the plot method, plot.FEXP.
Examples
data(videoVBR)
(fE <- FEXPest(videoVBR, order = 3, pvalmax = .5))
(fE3 <- FEXPest(videoVBR, order = 3, pvalmax = 1 ))
(fE7 <- FEXPest(videoVBR, order = 3, pvalmax = 0.10))
##--> this also choses order 2, as "FE" :
all.equal(fE $coef,
fE7$coef) # -> TRUE
confint(fE)
confint(fE7, level = 0.99)
.ffreq(8)
.ffreq(8, TRUE)
stopifnot(all.equal((1:3)/4,
.ffreq(8) / pi))