| expandParLongData {longitudinalData} | R Documentation |
~ Function: expandParLongData ~
Description
Prepare the values of an object
ParLongData to make them being usable by a
plotting function.
Usage
expandParLongData(xParLongData, y)
Arguments
xParLongData |
|
y |
|
Details
ParLongData object can hold values that are easy
to specify (like col="clusters" or pch="symbol") but that can not
be directly used by graphical functions plotTrajMeans and
plotTrajMeans3d. This function modify theses values to
make them fit with plotTrajMeans and plotTrajMeans3d expectations.
The field col and pch are the ones concern by this
function.
If y is a Partition, col and pch are
extanded to fit with the number of individual. If y is a number of
clusters, col and pch are extanded to fit with the
number of clusters.
If col='clusters', a color is affected to each clusters. Then
the field col receive a vector of color such that each
individual (if y is a Partition) or each clusters (if
y is a number of clusters) get its corresponding color.
If pch='letters', a letters is affected to each clusters. Then
the field pch receive a vector of letters such that each
individual (if y is a Partition) or each clusters (if
y is a number of clusters) get its corresponding letters.
Same if pch='symbols'.
Value
An object of class ParLongData
Author
Christophe Genolini
1. UMR U1027, INSERM, Université Paul Sabatier / Toulouse III / France
2. CeRSME, EA 2931, UFR STAPS, Université de Paris Ouest-Nanterre-La Défense / Nanterre / France
References
[1] C. Genolini and B. Falissard
"KmL: k-means for longitudinal data"
Computational Statistics, vol 25(2), pp 317-328, 2010
[2] C. Genolini and B. Falissard
"KmL: A package to cluster longitudinal data"
Computer Methods and Programs in Biomedicine, 104, pp e112-121, 2011
Examples
###################
### Some parameters for trajectories
(paramTraj <- parTRAJ(col="clusters"))
### Expand to a small partition with 3 clusters
part <- partition(LETTERS[rep(1:3,4)])
expandParLongData(paramTraj,part)
###################
### Some parameters for the mean trajectories
paramMean <- parMEAN()
### If there is 3 clusters :
expandParLongData(paramMean,3)
### If there is 5 clusters :
expandParLongData(paramMean,5)