Bysmxms {longit} | R Documentation |
Bayesian mixed model with random intercepts and random slopes for high dimensional longitudinal data
Description
Bayesian mixed effect model with random intercepts and slopes with longitudinally measured missing data. Fits using MCMC on longitudinal data set
Usage
Bysmxms(m, n, time, group, chains, n.adapt, data)
Arguments
m |
Starting number of column from where repeated observations begin |
n |
Ending number of columns till where the repeated observations ends |
time |
Timepoint information on which repeadted observations were taken |
group |
A categorical variable either 0 or 1. i.e. Gender - 1 male and 0 female |
chains |
Number of MCMC chains to be performed |
n.adapt |
Number of iterations to run in the JAGS adaptive phase. |
data |
High dimensional longitudinal data |
Value
Gives posterior means, standard deviation.
Author(s)
Atanu Bhattacharjee, Akash Pawar and Bhrigu Kumar Rajbongshi
References
Bhattacharjee, A. (2020). Bayesian Approaches in Oncology Using R and OpenBUGS. CRC Press.
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis. CRC press.
Fitzmaurice, G. M., Laird, N. M., & Ware, J. H. (2012). Applied longitudinal analysis (Vol. 998). John Wiley & Sons.
Examples
##
data(mesrep)
Bysmxms(m=4,n=7,time="Age",group="Gender",chains=4,n.adapt=100,data=msrep)
##