lrp {longRPart2} | R Documentation |
Longitudinal Recursive Partitioning
Description
Longitudinal Recursive Partitioning
Usage
lrp(method, nlme.model = NULL, randomFormula, fixedFormula = NULL, data,
start, group, rPartFormula, weight = NULL, R = NULL, min.dev = NULL,
control = rpart.control())
Arguments
method |
Whether to use lme() or nlme(). Use either method="lme" or method="nlme". This changes what additional arguments need to be passed. |
nlme.model |
Necessary to specify if method="nlme" |
randomFormula |
Random effects to include for nlme() or lme() |
fixedFormula |
Fixed effects to include for nlme() or lme() |
data |
Dataset |
start |
Starting values for nlme() |
group |
Grouping for nlme() |
rPartFormula |
Not sure yet |
weight |
Sample weights to be passed to rpart |
R |
Correlation matrix to use for nlme. this is correlation= |
min.dev |
The minimum decrease in deviance to choose a split. Note that this overrides the default cp criterion in rpart.control() |
control |
Control function to be passed to rpart() |
Examples
library(longRPart2)
data(ex.data.3)
model.0 = nlme(y~b0i+b1i*time,
data=ex.data.3,
fixed=b0i+b1i~1,
random=b0i+b1i~1,
group=~id,
start=c(10,5))
lcart.mod1 <- lrp(method="nlme",
nlme.model=y~b0i+b1i*time,
fixedFormula=b0i+b1i~1,
rPartFormula = ~ z,
group= ~ id,
randomFormula=b0i+b1i~1,
data=ex.data.3,
start=c(10,5))
data(lcart.mod1)
summary(lcart.mod1)
plot(lcart.mod1)
#lrp2Plot(lcart.mod1)
[Package longRPart2 version 0.2.3 Index]