plotROC {longROC} | R Documentation |
Plot ROC
Description
Plot the ROC curve
Usage
plotROC(ro, add=FALSE, col=NULL)
Arguments
ro |
Matrix with two columns (1-specificities,
sensitivities). It can be simply the output of |
add |
If |
col |
Colour for the ROC curve (defaults to red) |
Details
Plots the area under the ROC curve.
Value
A plot or a new line in an open plot.
Author(s)
Alessio Farcomeni alessio.farcomeni@uniroma1.it
References
Barbati, G. and Farcomeni, A. (2017) Prognostic assessment of repeatedly measured time-dependent biomarkers, with application to dilated cardiomuopathy, Statistical Methods & Applications, in press
See Also
Examples
# parameters
n=100
tt=3
Tmax=10
u=1.5
s=2
vtimes=c(0,1,2,5)
# generate data
ngrid=5000
ts=seq(0,Tmax,length=ngrid)
X2=matrix(rnorm(n*ngrid,0,0.1),n,ngrid)
for(i in 1:n) {
sa=sample(ngrid/6,1)
vals=sample(3,1)-1
X2[i,1:sa[1]]=vals[1]+X2[i,1:sa[1]]
X2[i,(sa[1]+1):ngrid]=vals[1]+sample(c(-2,2),1)+X2[i,(sa[1]+1):ngrid]
}
S1=matrix(sample(4,n,replace=TRUE),n,length(vtimes))
S2=matrix(NA,n,length(vtimes))
S2[,1]=X2[,1]
for(j in 2:length(vtimes)) {
tm=which.min(abs(ts-vtimes[j]))
S2[,j]=X2[,tm]}
cens=runif(n)
ripart=1-exp(-0.01*apply(exp(X2),1,cumsum)*ts/1:ngrid)
Ti=rep(NA,n)
for(i in 1:n) {
Ti[i]=ts[which.min(abs(ripart[,i]-cens[i]))]
}
cens=runif(n,0,Tmax*2)
delta=ifelse(cens>Ti,1,0)
Ti[cens<Ti]=cens[cens<Ti]
##
## an important marker
ro=roc(S2,Ti,delta,u,tt,s,vtimes)
plotROC(ro)
## an unrelated marker
ro=roc(S1,Ti,delta,u,tt,s,vtimes)
plotROC(ro)
[Package longROC version 1.0 Index]