maxauc {longROC} | R Documentation |
Optimal Score
Description
Compute optimal score for AUC
Usage
maxauc(X,etime,status,u=NULL,tt,s,vtimes,fc=NULL)
Arguments
X |
p by n by S array of longitudinal scores/biomarkers for i-th subject at j-th occasion (NA if unmeasured) |
etime |
n vector with follow-up times |
status |
n vector with event indicators |
u |
Lower limit for evaluation of sensitivity and
specificity. Defaults to |
tt |
Upper limit (time-horizon) for evaluation of sensitivity and specificity. |
s |
Scalar number of measurements/visits to use for each subject. s<=S |
vtimes |
S vector with visit times |
fc |
Events are defined as fc = 1. Defaults to $I(cup X(t_j)>cutoff)$ |
Details
This function can be used to find an optimal linear combination of p scores/biomarkers repeatedly measured over time. The resulting score is optimal as it maximizes the AUC among all possible linear combinations. The first biomarker in array X plays a special role, as by default its coefficient is unitary.
Value
A list with the following elements:
beta | Beta coefficients for the optimal score |
score | Optimal score |
Author(s)
Alessio Farcomeni alessio.farcomeni@uniroma1.it
References
Barbati, G. and Farcomeni, A. (2017) Prognostic assessment of repeatedly measured time-dependent biomarkers, with application to dilated cardiomuopathy, Statistical Methods \& Applications, in press
See Also
Examples
# parameters
n=25
tt=3
Tmax=10
u=1.5
s=2
vtimes=c(0,1,2,5)
# generate data
ngrid=500
ts=seq(0,Tmax,length=ngrid)
X2=matrix(rnorm(n*ngrid,0,0.1),n,ngrid)
for(i in 1:n) {
sa=sample(ngrid/6,1)
vals=sample(3,1)-1
X2[i,1:sa[1]]=vals[1]+X2[i,1:sa[1]]
X2[i,(sa[1]+1):ngrid]=vals[1]+sample(c(-2,2),1)+X2[i,(sa[1]+1):ngrid]
}
S1=matrix(sample(4,n,replace=TRUE),n,length(vtimes))
S2=matrix(NA,n,length(vtimes))
S2[,1]=X2[,1]
for(j in 2:length(vtimes)) {
tm=which.min(abs(ts-vtimes[j]))
S2[,j]=X2[,tm]}
cens=runif(n)
ripart=1-exp(-0.01*apply(exp(X2),1,cumsum)*ts/1:ngrid)
Ti=rep(NA,n)
for(i in 1:n) {
Ti[i]=ts[which.min(abs(ripart[,i]-cens[i]))]
}
cens=runif(n,0,Tmax*2)
delta=ifelse(cens>Ti,1,0)
Ti[cens<Ti]=cens[cens<Ti]
##
X=array(NA,c(2,nrow(S1),ncol(S1)))
X[1,,]=round(S2) #fewer different values, quicker computation
X[2,,]=S1
sc=maxauc(X,Ti,delta,u,tt,s,vtimes)
# beta coefficients
sc$beta
# final score (X[1,,]+X[2,,]*sc$beta[1]+...+X[p,,]*sc$beta[p-1])
sc$score