butstrap {longROC} | R Documentation |
Bootstrapping AUC
Description
Boostrap the AUC for significance testing and confidence interval calculation
Usage
butstrap(X,etime,status,u=NULL,tt,s,vtimes,auc1,B=50,fc=NULL)
Arguments
X |
n by S matrix of longitudinal score/biomarker for i-th subject at j-th occasion (NA if unmeasured) |
etime |
n vector with follow-up times |
status |
n vector with event indicators |
u |
Lower limit for evaluation of sensitivity and
specificity. Defaults to |
tt |
Upper limit (time-horizon) for evaluation of sensitivity and specificity. |
s |
Scalar number of measurements/visits to use for each subject. s<=S |
vtimes |
S vector with visit times |
auc1 |
AUC for the original data set |
B |
Number of bootstrap replicates. Defaults to |
fc |
Events are defined as fc = 1. Defaults to $I(cup X(t_j)>cutoff)$ |
Details
This function can be used to resample the AUC. The resulting p-value is obtained after assumption that the resampled AUC is Gaussian. Non-parametric confidence interval is obtained as the 2.5 and 97.5 confidence interval is simply given by a Gaussian approximation.
Value
A list with the following elements:
p.value | (Parametric) p-value for H0: AUC=0.5 |
se | Standard deviation of the AUC replicates |
ci.np | Non-parametric 95% confidence interval for AUC |
ci.par | Parametric 95% confidence interval for AUC |
Author(s)
Alessio Farcomeni alessio.farcomeni@uniroma1.it
References
Barbati, G. and Farcomeni, A. (2017) Prognostic assessment of repeatedly measured time-dependent biomarkers, with application to dilated cardiomuopathy, Statistical Methods \& Applications, in press
See Also
Examples
# parameters
n=100
tt=3
Tmax=10
u=1.5
s=2
vtimes=c(0,1,2,5)
# generate data
ngrid=5000
ts=seq(0,Tmax,length=ngrid)
X2=matrix(rnorm(n*ngrid,0,0.1),n,ngrid)
for(i in 1:n) {
sa=sample(ngrid/6,1)
vals=sample(3,1)-1
X2[i,1:sa[1]]=vals[1]+X2[i,1:sa[1]]
X2[i,(sa[1]+1):ngrid]=vals[1]+sample(c(-2,2),1)+X2[i,(sa[1]+1):ngrid]
}
S1=matrix(sample(4,n,replace=TRUE),n,length(vtimes))
S2=matrix(NA,n,length(vtimes))
S2[,1]=X2[,1]
for(j in 2:length(vtimes)) {
tm=which.min(abs(ts-vtimes[j]))
S2[,j]=X2[,tm]}
cens=runif(n)
ripart=1-exp(-0.01*apply(exp(X2),1,cumsum)*ts/1:ngrid)
Ti=rep(NA,n)
for(i in 1:n) {
Ti[i]=ts[which.min(abs(ripart[,i]-cens[i]))]
}
cens=runif(n,0,Tmax*2)
delta=ifelse(cens>Ti,1,0)
Ti[cens<Ti]=cens[cens<Ti]
## an unimportant marker
ro=roc(S1,Ti,delta,u,tt,s,vtimes)
but=butstrap(S1,Ti,delta,u,tt,s,vtimes,ro)