lol.project.bayes_optimal {lolR} | R Documentation |
Bayes Optimal
Description
A function for recovering the Bayes Optimal Projection, which optimizes Bayes classification.
Usage
lol.project.bayes_optimal(X, Y, mus, Sigmas, priors, ...)
Arguments
X |
|
Y |
|
mus |
|
Sigmas |
|
priors |
|
... |
optional args. |
Value
A list of class embedding
containing the following:
A |
|
d |
the eigen values associated with the eigendecomposition. |
ylabs |
|
centroids |
|
priors |
|
Xr |
|
cr |
|
Author(s)
Eric Bridgeford
Examples
library(lolR)
data <- lol.sims.rtrunk(n=200, d=30) # 200 examples of 30 dimensions
X <- data$X; Y <- data$Y
# obtain bayes-optimal projection of the data
model <- lol.project.bayes_optimal(X=X, Y=Y, mus=data$mus,
S=data$Sigmas, priors=data$priors)