twSigmaLogitnorm {logitnorm} | R Documentation |
twSigmaLogitnorm
Description
Estimating coefficients of logitnormal distribution from mode and given mu
Usage
twSigmaLogitnorm(mle, mu = 0)
Arguments
mle |
numeric vector: the mode of the density function |
mu |
for mu = 0 the distribution will be the flattest case (maybe bimodal) |
Details
For a mostly flat unimodal distribution use twCoefLogitnormMLE(mle,0)
Value
numeric matrix with columns c("mu","sigma")
rows correspond to rows in mle and mu
Author(s)
Thomas Wutzler
See Also
Examples
mle <- 0.8
(theta <- twSigmaLogitnorm(mle))
#
x <- seq(0,1,length.out = 41)[-c(1,41)] # plotting grid
px <- plogitnorm(x,mu = theta[1],sigma = theta[2]) #percentiles function
plot(px~x); abline(v = c(mle),col = "gray")
dx <- dlogitnorm(x,mu = theta[1],sigma = theta[2]) #density function
plot(dx~x); abline(v = c(mle),col = "gray")
# vectorized
(theta <- twSigmaLogitnorm(mle = seq(0.401,0.8,by = 0.1)))
[Package logitnorm version 0.8.39 Index]