cv.clpca {logisticPCA} | R Documentation |
CV for convex logistic PCA
Description
Run cross validation on dimension and m
for convex logistic PCA
Usage
cv.clpca(x, ks, ms = seq(2, 10, by = 2), folds = 5, quiet = TRUE, Ms, ...)
Arguments
x |
matrix with all binary entries |
ks |
the different dimensions |
ms |
the different approximations to the saturated model |
folds |
if |
quiet |
logical; whether the function should display progress |
Ms |
depricated. Use |
... |
Additional arguments passed to convexLogisticPCA |
Value
A matrix of the CV negative log likelihood with k
in rows and
m
in columns
Examples
# construct a low rank matrix in the logit scale
rows = 100
cols = 10
set.seed(1)
mat_logit = outer(rnorm(rows), rnorm(cols))
# generate a binary matrix
mat = (matrix(runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit)) * 1.0
## Not run:
negloglikes = cv.clpca(mat, ks = 1:9, ms = 3:6)
plot(negloglikes)
## End(Not run)
[Package logisticPCA version 0.2 Index]