logistic4p.fp {logistic4p} | R Documentation |
Logistic Regression with FP Misclassification Correction
Description
logistic4p.fp is used to fit logistic regression models with correction of the false positive misclassification in the binary dependent variable.
Usage
logistic4p.fp(x, y, initial, max.iter = 1000, epsilon = 1e-06, detail = FALSE)
Arguments
x , y |
x is a data frame or data matrix containing the predictor variables and y is the vector of outcomes. The number of rows in x must be the same as the length of y. |
initial |
starting values for the parameters in the model(FP,FN misclassification parameters and those in the linear predictor); if not specified, the default initials are 0 for the misclassification parameters and estimates obtained from the logistic regression for the parameters in the linear predictor. |
max.iter |
a positive integer giving the maximal number of iterations; if it is reached, the algorithm will stop. |
epsilon |
a positive convergence tolerance epsilon. |
detail |
logical indicating if output should be printed for each iteration. |
Value
estimates |
a named matrix of estimates including parameter estimates, standard errors, z-scores, and p-values. |
n.iter |
an integer giving the number of iteration used |
d |
the actual max absolute difference of the parameters of the last two iterations. |
loglike |
loglikelihood evaluated at the parameter estimates. |
AIC |
Akaike Information Criterion. |
BIC |
Bayesian Information Criterion. |
converged |
logical indicating whether the current procedure converged or not. |
Author(s)
Haiyan Liu and Zhiyong Zhang
Examples
## Not run:
data(nlsy)
y=nlsy[,1]
x=nlsy[, -1]
mod.fp=logistic4p.fp(x, y, max.iter = 1000, epsilon = 1e-06, detail = FALSE)
## End(Not run)