logistic4p.fp.fn {logistic4p} | R Documentation |
Logistic Regression with both FP and FN Misclassification Correction
Description
logistic4p.fp.fn is used to fit a logistic regression model with both FP and FN misclassification parameters to a binary dependent variable.
Usage
logistic4p.fp.fn(x, y, initial, max.iter = 1000, epsilon = 1e-06, detail = FALSE)
Arguments
x , y |
x is a data frame or data matrix containing the predictor variables and y is the vector of outcomes. The number of rows in x must be the same as the length of y. |
initial |
starting values for the parameters in the model(FP,FN misclassification parameters and those in the linear predictor); if not specified, the default initials are 0 for the misclassification parameters and estimates obtained from the logistic regression for the parameters in the linear predictor. |
max.iter |
a positive integer giving the maximal number of iterations; if it is reached, the algorithm will stop. |
epsilon |
a positive convergence tolerance epsilon. |
detail |
logical indicating if the output should be printed for each iteration. |
Value
estimates |
a named matrix of estimates including parameter estimates, standard errors, z-scores, and p-values. |
n.iter |
an integer giving the number of iteration used |
d |
the actual max absolute difference of the parameters of the last two iterations. |
loglike |
loglikelihood evaluated at the parameter estimates. |
AIC |
Akaike Information Criterion. |
BIC |
Bayesian Information Criterion. |
converged |
logical indicating whether the current procedure converged or not. |
Author(s)
Haiyan Liu and Zhiyong Zhang
Examples
## Not run:
data(nlsy)
y=nlsy[,1]
x=nlsy[, -1]
mod=logistic4p.fp.fn(x,y)
## End(Not run)