robust {logcondens} | R Documentation |
Robustification and Hermite Interpolation for ICMA
Description
Performs robustification and Hermite interpolation in the iterative convex minorant algorithm as described in Rufibach (2006, 2007).
Usage
robust(x, w, eta, etanew, grad)
Arguments
x |
Vector of independent and identically distributed numbers, with strictly increasing entries. |
w |
Optional vector of nonnegative weights corresponding to |
eta |
Current candidate vector. |
etanew |
New candidate vector. |
grad |
Gradient of L at current candidate vector |
Value
Returns a (possibly) new vector \eta
on the segment
(1 - t_0) \eta + t_0 \eta_{new}
such that the log-likelihood of this new \eta
is strictly greater than that of the initial \eta
and t_0
is chosen
according to the Hermite interpolation procedure described in Rufibach (2006, 2007).
Note
This function is not intended to be invoked by the end user.
Author(s)
Kaspar Rufibach, kaspar.rufibach@gmail.com,
http://www.kasparrufibach.ch
Lutz Duembgen, duembgen@stat.unibe.ch,
https://www.imsv.unibe.ch/about_us/staff/prof_dr_duembgen_lutz/index_eng.html
References
Rufibach K. (2006) Log-concave Density Estimation and Bump Hunting for i.i.d. Observations.
PhD Thesis, University of Bern, Switzerland and Georg-August University of Goettingen, Germany, 2006.
Available at https://slsp-ube.primo.exlibrisgroup.com/permalink/41SLSP_UBE/17e6d97/alma99116730175505511.
Rufibach, K. (2007) Computing maximum likelihood estimators of a log-concave density function. J. Stat. Comput. Simul. 77, 561–574.