rlogcon {logcondens} | R Documentation |
Generate random sample from the log-concave and the smoothed log-concave density estimator
Description
Generate a random sample from a distribution with density \hat f_n
and \hat f_n^*
,
as described in Duembgen and Rufibach (2009, Section 3).
Usage
rlogcon(n, x0)
Arguments
n |
Size of random sample to be generated. |
x0 |
Sorted vector of independent and identically distributed numbers, not necessarily unique. |
Value
X |
Random sample from |
X_star |
Random sample from |
U |
Uniform random sample of size |
Z |
Normal random sample of size |
f |
Computed log-concave density estimator. |
f.smoothed |
List containing smoothed log-concave density estimator, as output by |
x |
Vector of distinct observations generated from |
w |
Weights corresponding to |
Author(s)
Kaspar Rufibach, kaspar.rufibach@gmail.com,
http://www.kasparrufibach.ch
Lutz Duembgen, duembgen@stat.unibe.ch,
https://www.imsv.unibe.ch/about_us/staff/prof_dr_duembgen_lutz/index_eng.html
References
Duembgen, L. and Rufibach, K. (2009) Maximum likelihood estimation of a log–concave density and its distribution function: basic properties and uniform consistency. Bernoulli, 15(1), 40–68.
Duembgen, L. and Rufibach, K. (2011) logcondens: Computations Related to Univariate Log-Concave Density Estimation. Journal of Statistical Software, 39(6), 1–28. doi:10.18637/jss.v039.i06
Examples
## ===================================================
## Generate random samples as described in Section 3 of
## Duembgen and Rufibach (2009)
## ===================================================
x0 <- rnorm(111)
n <- 22
random <- rlogcon(n, x0)
## sample of size n from the log-concave density estimator
random$X
## sample of size n from the smoothed log-concave density estimator
random$X_star