quantilesLogConDens {logcondens} | R Documentation |
Function to compute Quantiles of Fhat
Description
Function to compute p_0
-quantile of
\widehat F_m(t) = \int_{x_1}^t \widehat f_m(t) dt,
where \widehat f_m
is the log-concave density estimator, typically computed via logConDens
and p_0
runs through the vector ps
.
The formula to compute a quantile at u \in [\widehat F_m(x_j), \widehat F_m(x_{j+1})]
for
j = 1, \ldots, n-1
is:
\widehat F_m^{-1}(u) = x_j + (x_{j+1}-x_j) G^{-1}_{(x_{j+1}-x_j)(\widehat \phi_{j+1}-\widehat \phi_j)} \Big( \frac{u - \widehat F_m(x_j)}{ \widehat F_m(x_{j+1}) - \widehat F_m(x_j)}\Big),
where G^{-1}_\theta
is described in qloglin
.
Usage
quantilesLogConDens(ps, res)
Arguments
ps |
Vector of real numbers where quantiles should be computed. |
res |
An object of class |
Value
Returns a data.frame with row (p_{0, i}, q_{0, i})
where
q_{0, i} = \inf_{x}\{\widehat F_m(x) \ge p_{0, i}\}
and p_{0, i}
runs through ps
.
Author(s)
Kaspar Rufibach, kaspar.rufibach@gmail.com,
http://www.kasparrufibach.ch
Lutz Duembgen, duembgen@stat.unibe.ch,
https://www.imsv.unibe.ch/about_us/staff/prof_dr_duembgen_lutz/index_eng.html
Examples
## estimate gamma density
set.seed(1977)
x <- rgamma(200, 2, 1)
res <- logConDens(x, smoothed = FALSE, print = FALSE)
## compute 0.95 quantile of Fhat
q <- quantilesLogConDens(0.95, res)[, "quantile"]
plot(res, which = "CDF", legend.pos = "none")
abline(h = 0.95, lty = 3); abline(v = q, lty = 3)