qloglin {logcondens}R Documentation

Quantile Function In a Simple Log-Linear model

Description

Suppose the random variable XX has density function

gθ(x)=θexp(θx)exp(θ)1g_\theta(x) = \frac{\theta \exp(\theta x)}{\exp(\theta) - 1}

for an arbitrary real number θ\theta and x[0,1]x \in [0,1]. The function qloglin is simply the quantile function

Gθ1(u)=θ1log(1+(eθ1)u)G^{-1}_\theta(u) = \theta^{-1} \log \Big( 1 + (e^\theta - 1)u \Big)

in this model, for u[0,1]u \in [0,1]. This quantile function is used for the computation of quantiles of F^m\widehat F_m in quantilesLogConDens.

Usage

qloglin(u, t)

Arguments

u

Vector in [0,1]d[0,1]^d where quantiles are to be computed at.

t

Parameter θ\theta.

Value

z

Vector containing the quantiles Gn1(ui)G_n^{-1}(u_i) for i=1,,di = 1, \ldots, d.

Note

Taylor approximation is used if θ\theta is small.

This function is not intended to be called by the end user.

Author(s)

Kaspar Rufibach, kaspar.rufibach@gmail.com,
http://www.kasparrufibach.ch

Lutz Duembgen, duembgen@stat.unibe.ch,
https://www.imsv.unibe.ch/about_us/staff/prof_dr_duembgen_lutz/index_eng.html


[Package logcondens version 2.1.8 Index]