intECDF {logcondens} | R Documentation |
Computes the Integrated Empirical Distribution Function at Arbitrary Real Numbers in s
Description
Computes the value of
\bar{I}(t) = \int_{x_1}^t \bar{F}(r) d \, r
where \bar F
is the empirical distribution function of x_1,\ldots,x_m
, at all real numbers t
in the
vector \bold{s}
. Note that t
(so all elements in \bold{s}
) must lie in [x_1,x_m]
.
The exact formula for \bar I(t)
is
\bar I(t) = \Big(\sum_{i=2}^{i_0}(x_i-x_{i-1})\frac{i-1}{n} \Big) + (t-x_{i_0})\frac{i_0-1}{n}
where i_0 = \max_{i=1,\ldots,m} \{x_i \le t\}
.
Usage
intECDF(s, x)
Arguments
s |
Vector of real numbers in |
x |
Vector |
Value
Vector of the same length as \bold{s}
, containing the values of \bar I
at the elements of \bold{s}
.
Author(s)
Kaspar Rufibach, kaspar.rufibach@gmail.com,
http://www.kasparrufibach.ch
Lutz Duembgen, duembgen@stat.unibe.ch,
https://www.imsv.unibe.ch/about_us/staff/prof_dr_duembgen_lutz/index_eng.html
References
Duembgen, L. and Rufibach, K. (2009) Maximum likelihood estimation of a log–concave density and its distribution function: basic properties and uniform consistency. Bernoulli, 15(1), 40–68.
Duembgen, L. and Rufibach, K. (2011) logcondens: Computations Related to Univariate Log-Concave Density Estimation. Journal of Statistical Software, 39(6), 1–28. doi:10.18637/jss.v039.i06
Rufibach K. (2006) Log-concave Density Estimation and Bump Hunting for i.i.d. Observations.
PhD Thesis, University of Bern, Switzerland and Georg-August University of Goettingen, Germany, 2006.
Available at https://slsp-ube.primo.exlibrisgroup.com/permalink/41SLSP_UBE/17e6d97/alma99116730175505511.
See Also
This function together with intF
can be used to check the characterization of the log-concave density
estimator in terms of distribution functions, see Rufibach (2006) and Duembgen and Rufibach (2009).
Examples
# for an example see the function intF.