Lhat_eta {logcondens} | R Documentation |
Value of the Log-Likelihood Function L, where Input is in Eta-Parametrization
Description
Gives the value of
L(\phi) = \sum_{i=1}^m w_i \phi(x_i) - \int_{x_1}^{x_m} \exp(\phi(t)) dt
where \phi
is parametrized via
{\bold{\eta}}({\bold{\phi}}) = \Bigl(\phi_1, \Bigl(\eta_1 + \sum_{j=2}^i (x_i-x_{i-1})\eta_i\Bigr)_{i=2}^m\Bigr).
Usage
Lhat_eta(x, w, eta)
Arguments
x |
Vector of independent and identically distributed numbers, with strictly increasing entries. |
w |
Optional vector of nonnegative weights corresponding to |
eta |
Some vector |
Value
Value L({\bold{\phi}}) = L({\bold{\phi}}({\bold{\eta}}))
of the log-likelihood function is returned.
Note
This function is not intended to be invoked by the end user.
Author(s)
Kaspar Rufibach, kaspar.rufibach@gmail.com,
http://www.kasparrufibach.ch
Lutz Duembgen, duembgen@stat.unibe.ch,
https://www.imsv.unibe.ch/about_us/staff/prof_dr_duembgen_lutz/index_eng.html