logconcens-package {logconcens} | R Documentation |
Maximum Likelihood Estimation of a Log-Concave Density Based on Censored Data
Description
Based on independent intervals X_i = [L_i,R_i]
, where -\infty < L_i \leq R_i \leq \infty
, compute the maximum likelihood estimator of a (sub)probability density under the assumption that it is log-concave. For further information see Duembgen, Rufibach, and Schuhmacher (2013).
Details
The main function is logcon
, which offers computation of the MLE for many types of censored and also exact data. Various parameters can be set that allow for fine control of the underlying EM algorithm in “difficult” situations. An object of type lcdensity
is returned, for which plot
, print
, and summary
methods are available. There is also a function loglike
for computing the log-likelihood of a lcdensity
object.
Author(s)
Dominic Schuhmacher dominic.schuhmacher@mathematik.uni-goettingen.de
Kaspar Rufibach kaspar.rufibach@gmail.com
Lutz Duembgen duembgen@stat.unibe.ch
Maintainer: Dominic Schuhmacher dominic.schuhmacher@mathematik.uni-goettingen.de
References
Duembgen, L., Rufibach, K., and Schuhmacher, D. (2014). Maximum-likelihood estimation of a log-concave density based on censored data. Electronic Journal of Statistics, 8(1), 1405-1437. doi:10.1214/14-EJS930
Examples
## Simple examples with simulated data.
## For more detailed examples see the help for the function logcon.
## exact data
set.seed(10)
x <- rnorm(100)
res <- logcon(x)
## Not run:
plot(res)
xi <- seq(-3,3,0.05)
lines(xi,log(dnorm(xi)))
## End(Not run)
## interval censored data
x <- rgamma(50,3,1)
x <- cbind(x,x+rexp(50,1))
plotint(x)
res <- logcon(x)
## Not run: plot(res, type="CDF")
## right censored data with mass at infinity
set.seed(11)
x <- rgamma(50,3,1)
x <- cbind(x,ifelse(rexp(50,1/3) < x,Inf,x))
plotint(x)
res <- logcon(x,adapt.p0=TRUE)
## Not run: plot(res, type="survival")
## rounded/binned data
set.seed(12)
x <- round(rnorm(100))
x <- cbind(x-0.5,x+0.5)
plotint(x)
res <- logcon(x)
## Not run:
plot(res)
xi <- seq(-3,3,0.05)
lines(xi,log(dnorm(xi)))
## End(Not run)