cure.profile {logconcens} | R Documentation |
Evaluate the Profile Log-Likelihood on a Grid of p_0
-Values
Description
For each of a series of values for the cure parameter p_0
run the function logcon
and evaluate the (normalized) log-likelihood at (\phi,p_0)
, where \phi
is the log subprobability density returned by logcon
. This serves for (approximate) joint likelihood maximization in (\phi,p_0)
.
Usage
cure.profile(x, p0grid=seq(0,0.95,0.05), knot.prec=IQR(x[x<Inf])/75,
reduce=TRUE, control=lc.control())
Arguments
x |
a two-column matrix of |
p0grid |
a vector of values |
knot.prec , reduce , control |
arguments passed to the function |
Value
A list containing the following values:
p0hat |
the element in |
status |
the vector of (normalized) profile log-likelihood values for the elements of |
Note
For a large p0grid
-vector (fine grid) computations may take a long time. Consider using the option adapt.p0
in the function logcon
for a much faster method of joint likelihood maximization in (\phi,p_0)
.
Author(s)
Dominic Schuhmacher dominic.schuhmacher@mathematik.uni-goettingen.de
Kaspar Rufibach kaspar.rufibach@gmail.com
Lutz Duembgen duembgen@stat.unibe.ch
See Also
Examples
## The example from the logconcens-package help page:
set.seed(11)
x <- rgamma(50,3,1)
x <- cbind(x,ifelse(rexp(50,1/3) < x,Inf,x))
## Not run:
plotint(x)
progrid <- seq(0.1,0.6,0.025)
prores <- cure.profile(x, progrid)
plot(progrid, prores$loglike)
prores$p0hat
res <- logcon(x, p0=prores$p0hat)
plot(res, type="survival")
## End(Not run)