h_GenROT_bivariate {locpolExpectile} | R Documentation |
Rule-of-Thumb bandwidth selectors for bivariate covariate setting
Description
General Rule-of-Thumb bandwidth selector for the expectile regression
proposed by Adam and Gijbels (2021b) see Formula (26) for a bivariate covariate setting.
The weight functions are chosen to be equal to the indicator
functions on [min(Z_{ki})+0.1,max(Z_{ki})-0.1]
for k=1,2
(i.e. for the two covariates) and j=0
and p=1
.
Usage
h_GenROT_bivariate(Z1, Z2, Y, omega, kernel = gaussK)
Arguments
Z1 |
The first covariate data values. |
Z2 |
The second covariate data values. |
Y |
The response data values. |
omega |
Numeric vector of level between 0 and 1 where 0.5 corresponds to the mean. |
kernel |
The kernel used to perform the estimation. In default setting,
|
Value
h_GenROT_bivariate
provides the general Rule-of-Thumb bandwidth selector
for the expectile regression, in the bivariate covariate setting,
proposed by Adam and Gijbels (2021b).
References
Adam, C. and Gijbels, I. (2021b). Partially linear expectile regression using local polynomial fitting. In Advances in Contemporary Statistics and Econometrics: Festschrift in Honor of Christine Thomas-Agnan, Chapter 8, pages 139–160. Springer, New York.
Examples
library(locpol)
library(lestat)
set.seed(6)
dist <- muniformdistribution(rep(0, 2), rep(1, 2))
values<-simulate(dist,200)
Z_1<-values[,1]
Z_2<-values[,2]
Z<-rbind(Z_1,Z_2)
gamma=cbind(3,-0.4)
set.seed(7)
eta_1<-rnorm(100,0,1)
X1=(gamma%*%Z)+(1.5*eta_1)
set.seed(8)
eta_2<-rnorm(100,0,2)
X2=(gamma%*%Z)+(1.5*eta_2)
X<-rbind(X1,X2)
set.seed(9)
epsilon<-rt(100,3)
delta_true<-rbind(0,-0.8)
Y=as.numeric((t(delta_true)%*%X)+(0.2*exp(1.5*(gamma%*%Z)))+epsilon)
h=h_GenROT_bivariate(Z1=Z_1,Z2=Z_2,Y=Y,kernel=gaussK,omega=0.1)
#h=0.1241427