expectreg_loclin_bivariate {locpolExpectile} | R Documentation |
Local linear expectile regression (iterative procedure) for a bivariate covariate case
Description
Formula interface for the local linear expectile estimation for a bivariate covariate case.
Usage
expectreg_loclin_bivariate(
Z1,
Z2,
Y,
omega,
kernel = gaussK,
h,
grid = cbind(seq(min(Z1), max(Z1), length.out = length(Z1)), seq(min(Z2), max(Z2),
length.out = length(Z2)))
)
Arguments
Z1 |
The first covariate data values. |
Z2 |
The second covariate data values. |
Y |
The response data values. |
omega |
Numeric vector of level between 0 and 1 where 0.5 corresponds to the mean. |
kernel |
The kernel used to perform the estimation. In default setting,
|
h |
Smoothing parameter, bandwidth. |
grid |
Matrix of evaluation points. In default setting, a grid of
equispaced grid-values on the domain of the variables |
Value
expectreg_loclin_bivariate
local linear expectile estimator
proposed and studied by Adam and Gijbels (2021b) for a bivariate covariate case.
expectreg_loclin_bivariate
returns a matrix whose components are
the estimation of the bivariate expectile surface, of order \omega
according to the grid matrix.
The rows are the grid on the first covariate data values (i.e. Z1
)
and the columns the grid on the second covariate data values (i.e. Z2
).
References
Adam, C. and Gijbels, I. (2021b). Partially linear expectile regression using local polynomial fitting. In Advances in Contemporary Statistics and Econometrics: Festschrift in Honor of Christine Thomas-Agnan, Chapter 8, pages 139–160. Springer, New York.
Examples
library(locpol)
library(lestat)
set.seed(6)
dist <- muniformdistribution(rep(0, 2), rep(1, 2))
values<-simulate(dist,200)
Z_1<-values[,1]
Z_2<-values[,2]
Z<-rbind(Z_1,Z_2)
gamma=cbind(3,-0.4)
set.seed(7)
eta_1<-rnorm(100,0,1)
X1=(gamma%*%Z)+(1.5*eta_1)
set.seed(8)
eta_2<-rnorm(100,0,2)
X2=(gamma%*%Z)+(1.5*eta_2)
X<-rbind(X1,X2)
set.seed(9)
epsilon<-rt(100,3)
delta_true<-rbind(0,-0.8)
Y=as.numeric((t(delta_true)%*%X)+(0.2*exp(1.5*(gamma%*%Z)))+epsilon)
expectreg_loclin_bivariate(Z1=Z_1,Z2=Z_2,Y=Y,omega=0.1
,kernel=gaussK,h=0.1,grid=cbind(seq(min(Z_1),max(Z_1)
,length.out=10),seq(min(Z_2),max(Z_2),length.out=10)))