ParLin_expectreg_homo_uni {locpolExpectile} | R Documentation |
Partially linear expectile regression with a homoscedastic error and a univariate variable in the nonparametric function
Description
Formula interface for the partially linear expectile regression using local linear expectile estimation assuming a homoscedastic error and a univariate variable in the nonparametric function. For the nonparametric part, the general Rule-of-Thumb bandwidth selector proposed in Adam and Gijbels (2021a) is used. See Adam and Gijbels (2021b) for more details.
Usage
ParLin_expectreg_homo_uni(
X,
Y,
Z,
omega = 0.3,
kernel = gaussK,
grid = seq(min(Z), max(Z), length.out = 100)
)
Arguments
X |
The covariates data values for the linear part (of size |
Y |
The response data values. |
Z |
The covariate data values for the nonparametric part. |
omega |
Numeric vector of level between 0 and 1 where 0.5 corresponds to the mean. |
kernel |
The kernel used to perform the estimation. In default setting,
|
grid |
Vector of evaluation points used for the nonparametric part. In default setting, a grid of 100
equispaced grid-values on the domain of the variable |
Value
ParLin_expectreg_homo_uni
partially linear expectile estimators
for a homoscedastic error and a univariare variable in the nonparametric part
proposed and studied by Adam and Gijbels (2021b). ParLin_expectreg_homo_uni
returns a list whose components are:
-
Linear
The delta estimators for the linear part -
Nonlinear
The estimation of the nonparametric part according to the grid.
References
Adam, C. and Gijbels, I. (2021a). Local polynomial expectile regression. Annals of the Institute of Statistical Mathematics doi:10.1007/s10463-021-00799-y.
Adam, C. and Gijbels, I. (2021b). Partially linear expectile regression using local polynomial fitting. In Advances in Contemporary Statistics and Econometrics: Festschrift in Honor of Christine Thomas-Agnan, Chapter 8, pages 139–160. Springer, New York.
Examples
library(locpol)
set.seed(123)
Z<-runif(100,-3,3)
eta_1<-rnorm(100,0,1)
X1<-(0.9*Z)+(1.5*eta_1)
set.seed(1234)
eta_2<-rnorm(100,0,2)
X2<-(0.9*Z)+(1.5*eta_2)
X<-rbind(X1,X2)
set.seed(12345)
epsilon<-rnorm(100,0,1)
delta<-rbind(0.8,-0.8)
Y<-as.numeric((t(delta)%*%X)+(10*sin(0.9*Z))+5*epsilon)
ParLin_expectreg_homo_uni(X=t(X),Y=Y,Z=Z,omega=0.3
,kernel=gaussK,grid=seq(min(Z),max(Z),length.out=10))