ParLin_expectreg_hetero {locpolExpectile} | R Documentation |
Partially linear expectile regression with different possible heteroscedastic error and univariate variable in the nonparametric function
Description
Formula interface for the partially linear expectile regression
using local linear expectile estimation for different heteroscedastic error structure and
a univariate variable in the nonparametric function g(.)
. The model is of the form
Y=\delta^T X + g(Z) + \sigma(X) \epsilon
, Y=\delta^T X + g(Z) + \sigma(Z) \epsilon
or Y=\delta^T X + g(Z) + \sigma(Z,X) \epsilon
.
See Table 1 in Adam and Gijbels (2021b) for more details.
Usage
ParLin_expectreg_hetero(
X,
Y,
Z,
omega = 0.3,
kernel = gaussK,
heteroscedastic = c("X", "Z", "Z and X")
)
Arguments
X |
The covariates data values for the linear part
(of size |
Y |
The response data values. |
Z |
The covariate data values for the nonparametric part. |
omega |
Numeric vector of level between 0 and 1 where 0.5 corresponds to the mean. |
kernel |
The kernel used to perform the estimation. In default setting,
|
heteroscedastic |
Heteroscedastic error depending on |
Value
ParLin_expectreg_hetero
partially linear expectile estimators
for different heteroscedastic error structures and a univariare variable in the nonparametric part,
proposed and studied by Adam and Gijbels (2021b). ParLin_expectreg_hetero
returns a list whose components are:
If the heteroscedastic error depends on
Z
:-
Linear
The delta estimators for the linear part -
Nonlinear
The estimation of the nonparametric part according to the observed valuesZ_i
.
-
If the heteroscedastic error depends on
X
:-
Linear
The delta estimators for the linear part -
Nonlinear_g
The estimation of the nonparametric part according to the observed valuesZ_i
. -
Nonlinear_g_omega
The estimation of the nonparametric part according to the observed valuesX_i
(ifX
is univariate) or to the couple of observed values(X_{1i},X_{2j})
.
-
If the heteroscedastic error depends on
Z
andX
:-
Linear
The delta estimators for the linear part -
Nonlinear_g
The estimation of the nonparametric part according to the couple of the observed values(Z_i,X_j)
(ifX
is univariate) or to the observed values(Z_i,X_{1i},X_{2i})
.
-
References
Adam, C. and Gijbels, I. (2021b). Partially linear expectile regression using local polynomial fitting. In Advances in Contemporary Statistics and Econometrics: Festschrift in Honor of Christine Thomas-Agnan, Chapter 8, pages 139–160. Springer, New York.
Examples
library(locpol)
set.seed(123)
Z<-runif(100,-3,3)
eta_1<-rnorm(100,0,1)
X1<-(0.9*Z)+(1.5*eta_1)
set.seed(1234)
eta_2<-rnorm(100,0,2)
X2<-(0.9*Z)+(1.5*eta_2)
X<-rbind(X1,X2)
set.seed(12345)
epsilon<-rnorm(100,0,1)
delta<-rbind(0.8,-0.8)
Y<-as.numeric((t(delta)%*%X)+(10*sin(0.9*Z))+(0.6*X1^2)*epsilon)
ParLin_expectreg_hetero(X=t(X),Y=Y,Z=Z,omega=0.3,kernel=gaussK,heteroscedastic="X")