localgauss {localgauss} | R Documentation |
local Gaussian parameters
Description
Routine for estimating local Gaussian parameters based on a sample
from the bivariate distribution under consideration. The routine can either
estimate local parameters on a grid covering the data controlled by the gsize
and hthresh
parameters. Otherwise, local Gaussian parameters can be estimated at coordinates
specified by the user in xy.mat
.
Usage
localgauss(x,y,b1=1,b2=1,gsize=15,hthresh=0.001,xy.mat=NULL)
Arguments
x , y |
The two data vectors |
b1 , b2 |
The bandwidth in the |
gsize |
The gridsize (only used if |
hthresh |
Gridpoints where a non-parametric density estimate is lower than hthresh are omitted (only used if |
xy.mat |
A M times 2 matrix of points where the local parameters are to be estimated. |
Details
The objective function is maximized using a modified Newton method. The user should check whether the field eflag in the returned object is zero for all estimates. If not, the optimizer has not converged and the estimates should not be trusted. For more details, see [Reference to article].
Value
S3 object of type localgauss
containing the fields:
par.est |
M times 5 matrix of parameter estimates, with columns mu1,mu2,sigma1,sigma2,rho. |
eflag |
M-vector of exitflags from the optimizer. Estimations with exit flags other than 0 should not be trusted. |
hessian |
The negative Hessian of the objective function. |
References
Geir Drage Berentsen, Tore Selland Kleppe, Dag Tjostheim, Introducing localgauss, an R Package for Estimating and Visualizing Local Gaussian Correlation, Journal of Statistical Software, 56(12), 1-18, 2014, doi: 10.18637/jss.v056.i12 See also Tjoestheim, D. and Hufthammer K. O., Local Gaussian correlation: A new measure of dependence, Journal of Econometrics, 172(1),pages 33-48,2013, for a detailed description of local Gaussian correlation.
See Also
Examples
x=rnorm(n=1000)
y=x^2 + rnorm(n=1000)
lgobj = localgauss(x,y)