ospca_loading {loadings} | R Documentation |
Orthogonal smoothed principal component loading
Description
This function computes orthogonals smoothed principal component (OS-PC) loading from the result of the "os_pca" function. This is also wrapper function of pls_loading function.
Usage
ospca_loading(ospca)
Arguments
ospca |
The following variables (P,T,Q and U) are included in the ospca object. P : A matrix with OS-PC loading in each column T : A matrix with OS-PC score in each column MT : A matrix with averaging OS-PC score for repeated data in each column (If not for repeated data, the matrix MT equals to the matrix T) Q : A matrix with OS-PC loading for auxiliary variable in each column U : A matrix with OS-PC score for auxiliary variable in each column |
Details
The OS-PC loading and the p-value by statistical hypothesis testing is added to the ospca object returned by the "os-pca" function.
Value
The return value is a list object that contains the following elements:
R : OS-PCA loading (Correlation coefficient between OS-PC score of auxiliary variable and each variables in data matrix.)
p.value : p-value of OS-PCA loading
Author(s)
Hiroyuki Yamamoto
References
Yamamoto H., Nakayama Y., Tsugawa H. (2021) OS-PCA: Orthogonal Smoothed Principal Component Analysis Applied to Metabolome Data, Metabolites, 11(3):149.
Examples
# metabolic turnover data
data(turnover)
X <- turnover$X
D <- turnover$D
ospca <- os_pca(X,D,0.999)
ospca <- ospca_loading(ospca)
ospca$loading$R
ospca$loading$p.value
# metabolome data
data(greentea)
X <- greentea$X
D <- greentea$D
M <- greentea$M
ospca <- os_pca(X,D,0.1,M)
ospca <- ospca_loading(ospca)
ospca$loading$R
ospca$loading$p.value