multipls_geigen {loadings} | R Documentation |
Multiset PLS : Multiset partial least squares
Description
This function performs Multiset partial least squares (Multiset PLS). In this function, data matrix is automatically scaled to zero mean and unit variance (i.e. autoscaling) for each variables.
Usage
multipls_geigen(X,Y,tau)
Arguments
X |
List of data matrix that include variables in each columns. |
Y |
Dummy matrix that include group information 0,1 in each columns. |
tau |
Matrix for strength parameter of the connection between omics datasets or between omics dataset and group information. |
Details
Diagonal elements of matrix tau must be 0.
Value
The return value is a list object that contains the following elements:
P : A list of matrix with Multiset PLS coefficients for the explanatory variables in each column for each dataset
T : A list of matrix with Multiset PLS scores for the explanatory variables in each column for each dataset
Q : A matrix with Multiset PLS coefficients for the response variable in each column
U : A matrix with Multiset PLS scores for the response variable in each column
tau : Matrix for strength parameter of the connection between omics datasets or between omics dataset and group information (same as input value).
Author(s)
Hiroyuki Yamamoto
References
Yamamoto H. (2022) Multiset partial least squares with rank order of groups for integrating multi-omics data, bioRxiv.
Examples
data(whhl)
X <- whhl$X
Y <- whhl$Y
tau <- whhl$tau
multipls <- multipls_geigen(X,Y,tau)