lmtp_control {lmtp} | R Documentation |
Set LMTP Estimation Parameters
Description
Set LMTP Estimation Parameters
Usage
lmtp_control(
.bound = 1e+05,
.trim = 0.999,
.learners_outcome_folds = 10,
.learners_trt_folds = 10,
.return_full_fits = FALSE
)
Arguments
.bound |
[numeric(1) ]
Determines that maximum and minimum values (scaled) predictions
will be bounded by. The default is 1e-5, bounding predictions by 1e-5 and 0.9999.
|
.trim |
[numeric(1) ]
Determines the amount the density ratios should be trimmed.
The default is 0.999, trimming the density ratios greater than the 0.999 percentile
to the 0.999 percentile. A value of 1 indicates no trimming.
|
.learners_outcome_folds |
[integer(1) ]
The number of cross-validation folds for learners_outcome .
|
.learners_trt_folds |
[integer(1) ]
The number of cross-validation folds for learners_trt .
|
.return_full_fits |
[logical(1) ]
Return full SuperLearner fits? Default is FALSE , return only SuperLearner weights.
|
Value
A list of parameters controlling the estimation procedure.
Examples
lmtp_control(.trim = 0.975)
[Package
lmtp version 1.4.0
Index]