summary.lmridge {lmridge} | R Documentation |
Summarizing Linear Ridge Regression Fits
Description
The summary
method for class "lmridge" for scalar or vector biasing parameter K
(Cule and De lorio, 2012).
Usage
## S3 method for class 'lmridge'
summary(object, ...)
## S3 method for class 'summary.lmridge'
print(x, digits = max(3, getOption("digits") - 3),
signif.stars = getOption("show.signif.stars"), ...)
Arguments
object |
An "lmridge" object, typically generated by a call to |
x |
An object of class |
signif.stars |
logical: if |
digits |
The number of significant digits to use when printing. |
... |
Not presently used in this implementation. |
Details
print.summary.lmridge
tries to be smart about formatting the coefficients, standard errors etc. and additionally gives 'significance stars' if signif.stars
is TRUE
.
Value
The function summary
computes and returns a list of summary statistics of the fitted linear ridge regression model for scalar or vector value biasing parameter K
given as argument in lmridge
function. All summary information can be called using list object summaries
.
coefficients |
A |
stats |
Ridge related statistics of R-squared, adjusted R-squared, F-statistics for testing of coefficients, AIC and BIC values for given biasing parameter |
rmse1 |
Minimum MSE value for given biasing parameter |
rmse2 |
Value of |
K |
Value of given biasing parameter. |
df1 |
Numerator degrees of freedom for p-value of F-statistics. |
df2 |
Denominator degrees of freedom for p-value of F-statistics. |
fpvalue |
p-value for each F-statistics. |
Author(s)
Muhammad Imdad Ullah, Muhammad Aslam
References
Cule, E. and De lorio, M. (2012). A semi-Automatic method to guide the choice of ridge parameter in ridge regression. arXiv:1205.0686v1 [stat.AP].
Hoerl, A. E., Kennard, R. W., and Baldwin, K. F. (1975). Ridge Regression: Some Simulation. Communication in Statistics, 4, 105-123. doi:10.1080/03610927508827232.
Hoerl, A. E. and Kennard, R. W., (1970). Ridge Regression: Biased Estimation of Nonorthogonal Problems. Technometrics, 12, 55-67. doi:10.1080/00401706.1970.10488634.
Imdad, M. U. Addressing Linear Regression Models with Correlated Regressors: Some Package Development in R (Doctoral Thesis, Department of Statistics, Bahauddin Zakariya University, Multan, Pakistan), 2017.
See Also
The ridge model fitting lmridge
Examples
mod <- lmridge(y~., as.data.frame(Hald), K = c(0, 0.0132, 0.1))
summary(mod)
## coefficients for first biasing parameter
summary(mod)$summaries[[1]]$coefficients
summary(mod)$summaries[[1]][[1]]
## ridge related statistics from summary function
summary(mod)$summaries[[1]]$stats
## Ridge F-test's p-value
summary(mod)$summaries[[1]]$fpvalue