multcomp {lmreg} | R Documentation |
Multiple comparison tests
Description
Produces p-values of Bonferroni and Scheffe multiple comparison tests of several testable linear hypotheses.
Usage
multcomp(y, X, A, xi, tol=sqrt(.Machine$double.eps))
Arguments
y |
Responese vector in linear model. |
X |
Design/model matrix or matrix containing values of explanatory variables (generally including intercept). |
A |
Coefficient matrix (A.beta=xi is the set of multiple hypotheses that has to be tested). |
xi |
A vector of values (A.beta=xi is the set of multiple hypotheses that has to be tested). |
tol |
A relative tolerance to detect zero singular values while computing generalized inverse, in case X is rank deficient (default = sqrt(.Machine$double.eps)). |
Details
Normal distribution of response (given explanatory variables and/or factors) is assumed.
Value
Returns F statistics and p-values of Bonferroni and Scheffe multiple comparison tests of the set of linear hypotheses. A set of five vectors:
A |
Specified coefficient matrix. |
xi |
Specified values of A.beta. |
Fstat |
Set of F-ratios for each hypothesis. |
Bonferroni.p |
Set of Bonferroni p-values for different hypotheses. |
Scheffe.p |
Set of Scheffe p-values for different hypotheses. |
Author(s)
Debasis Sengupta <shairiksengupta@gmail.com>, Jinwen Qiu <qjwsnow_ctw@hotmail.com>
References
Sengupta and Jammalamadaka (2019), Linear Models and Regression with R: An Integrated Approach.
Examples
data(denim)
attach(denim)
X <- cbind(1,binaries(Denim),binaries(Laundry))
A <- rbind(c(0,1,-1,0,0,0,0),c(0,1,0,-1,0,0,0),c(0,0,1,-1,0,0,0))
xi <- c(0,0,0)
multcomp(Abrasion, X, A, xi, tol=1e-14)
detach(denim)