| cisngl {lmreg} | R Documentation | 
Confidence interval for a linear parametric function in a linear model
Description
Computes point estimate and confidence interval for a single linear parametric function in a linear model.
Usage
cisngl(y, X, p, alpha, type, tol=sqrt(.Machine$double.eps))
Arguments
| y | Responese vector in linear model. | 
| X | Design/model matrix or matrix containing values of explanatory variables (generally including intercept). | 
| p | Coefficient vector of linear parametric function for which confidence interval is needed. | 
| alpha | Non-coverage probability of confidence interval. | 
| type | Type of confidence interval ("lower", "upper", "both"). | 
| tol | A relative tolerance to detect zero singular values while computing generalized inverse, in case X is rank deficient (default = sqrt(.Machine$double.eps)). | 
Details
Normal distribution of response (given explanatory variables and/or factors) is assumed.
Value
Returns a list of two objects:
| estimate | Point estimate. | 
| ci | Confidence interval. | 
Author(s)
Debasis Sengupta <shairiksengupta@gmail.com>, Jinwen Qiu <qjwsnow_ctw@hotmail.com>
References
Sengupta and Jammalamadaka (2019), Linear Models and Regression with R: An Integrated Approach.
Examples
library(MASS)
data(birthwt)
attach(birthwt)
X <- cbind(1, smoke, binaries(race))
p <- c(0,1,0,0,0)
cisngl(bwt, X, p, 0.05, type = "upper", tol = 1e-10)
cisngl(bwt, X, p, 0.05, type = "both", tol = 1e-10) 
detach(birthwt)